Midtern Exam-4 (Spring 14) Solutions

- 1.) Multiple Choice (18 pts.) For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).
 - (a)—If the intensity of a sound wave is doubled, then its intensity level increases by 3 decibels. TRUE FALSE
 - (b) When two pulses travel toward each other and collide, they will reflect with opposite velocity from each other.

 TRUE FALSE
 - (c) If the equilibrium temperature of a blackbody emitter is doubled, the emitted (=absorbed) heat increases by a factor of 10, TRUE FALSE
 - (d) For a mixture of two different ideal gases at the same temperature, the average speed of the different gas molecules is different.

 TRUE FALSE
 - (e) The internal energy of an ideal gas depends on both pressure and temperature of the gas. TRUE FALSE
 - (f) Spontaneous heat flow can proceed both from hot to cold and from cold to hot. TRUE FALSE

No.	Points
1	AL
2	IS
3	BY
4	RR
5	42
Sum	

A train blows its horn as it approaches a tunnel into a vertically rising mountain (see figure below). The horn produces a tone of 1500 Hz and the train travels at a speed of 110 mph.

- (a) Find the tone frequency that is heard by an observer standing near the entrance of the tunnel.
- (b) If the horn sound arrives at the observer with an intensity of $5 \cdot 10^{-7} \ W/m^2$, what is the corresponding intensity level?

(a)
$$\int ds = \int s \frac{V_s}{V_s - V_{train}} = 1748 Hz$$

One end of an insulated copper bar is maintained at a temperature of $85^{\circ}C$, while the other end is immersed into a mixture of $1\,kg$ ice and $1\,kg$ water. The rod is $2\,m$ long and has a circular cross-sectional area of radius $0.8\,cm$.

- (a) How much heat has to be added to the mixture to bring it to room temperature?
- (b) Calculate the heat flow through the copper bar and the total time of the heating process.

4.) Ideal Gas (24 pts.)

A cylinder containing an ideal gas is held at fixed pressure of $3.3 \cdot 10^5 Pa$. The gas is cooled from room temperature to $-50^{\circ}C$, thereby reducing the volume from $0.9 \, m^3$ to $0.65 \, m^3$.

- (a) How many moles of gas are in the cylinder?
- (b) How much work is done on or by the gas (include the correct sign)?
- (c) By how much does the internal energy of the gas change?
- (d) How much heat is added or extracted from the gas?

(a)
$$pV = nRT \implies n = \frac{pV}{RT} = 122 \text{ mol}$$

(b)
$$W = P \Delta V = -8.25 \cdot 10^4 \text{ }$$

A freezer has a coefficient of performance of 5. It converts $1.5\,kg$ of water at room temperature into ice at $25^{\circ}F$ within 20 minutes.

- (a) How much electrical energy is consumed in the process and at what power does the refrigerator operate?
- (b) How much heat is released into the environment of the freezer?

(a)
$$|W| = \frac{Q_c}{K}$$
 $Q_c = M (\Delta T_w C_w + L_f + \Delta T_{ice} C_{iee})$
= 6.30.105 Z

$$=$$
 $|W| = 1.26 \cdot 10^5 \text{ g}$

$$P = \frac{|W|}{\Delta t} = 105 \text{ W}$$

(b)
$$Q_H = |W| + Q_C = 7.56 \cdot 10^5$$