Exam-2 Solutions (S16)

- 1.) Multiple Choice (18 pts.) For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).
 - (a) The acceleration of a satellite in orbit depends on the mass of the satellite.

 TRUE (FALSE)
 - (b) The gravitational force between any two masses can be either attractive or repulsive. TRUE FALSE
 - (c) The normal force is a conservative force.
 TRUE FALSE
 - (d) The kinetic energy of an object cannot be negative.

 TRUE FALSE
 - (e) If negative net work is done on an object, its speed decreases. TRUE FALSE
 - (f) When a tennis ball bounces elastically off a wall, its momentum does not change. TRUE FALSE

No.	Points
1	YZ
2	JW
3	TW
4	CH
5	RR
Sum	

3.) Mechanical Energy Conservation

(20 pts.)

A monkey is sitting on a tree branch 2m above the ground. He jumps off the branch at an initial speed of 6m/s. Use energy conservation to calculate

- (a) the maximal speed of the monkey when jumping to the ground.
- (b) the maximal height he can reach in the tree when jumping straight up.

(a)
$$E_o = E_1$$

=>
$$V_1 = \sqrt{V_0^2 + 2gh} = 8.67 \text{ m/s}$$

(b)
$$E_{cr} = E_2$$

$$h_{max} = h_0 + \frac{v_0^2}{28} = 3.84 \text{ m}$$

2.) Centripetal Force in Circular Motion

(20 pts.)

A coin is placed on a small wooden horizontal turn table at a distance of $10 \, cm$ from the center. The turn table then starts rotating. The static friction coefficient between turn table and coin is 0.7.

- (a) What is the maximal centripetal acceleration that the friction force can support?
- (b) Calculate the period of the coin's circular motion when rotating at maximal speed.

(a)
$$F_c = f_5$$

 $ma_c^{max} = \mu_5 F_N = \mu_5 mg$
 $= \sum_{\alpha c} q_{c}^{mx} = \mu_5 q_{c} = 6.86 \frac{m}{5^2}$

(b)
$$V = \frac{2\pi R}{T}$$
 \Rightarrow $T = \frac{2\pi R}{V}$
 $\frac{mV^2}{R} = \mu_s mg$ \Rightarrow $V^2 = \mu_s Rg$
 \Rightarrow $T = \frac{2\pi R}{V} = 2\pi \sqrt{\frac{R}{\mu_s g}} = 0.76 s$

Block 1 (mass m_1 =40 kg) and block 2 (mass m_2 =8 kg) are forced toward each other compressing a spring between them. After being released from rest the blocks reced from each other on a horizontal frictionless surface and leave the massless relaxed spring behind. Block 1 is found to have a final speed of $0.9 \, m/s$.

- (a) What is the final speed of block 2?
- (b) What is the energy stored in the spring before the blocks are released?

(a)
$$P_0 = P_f$$

$$V_{2f} = -\frac{m_1}{m_2} V_{1f} = -4.5 \text{ mg}$$

or
$$V_{2f} = 4.5 \frac{m}{5}$$

$$= \frac{1}{2} m_1 v_{if}^2 + \frac{1}{2} m_2 v_{2f}^2 = 97.2$$

- 5.) Non-Conservative Work and Momentum Conservation (24 pts.) A sedan (mass $m_S=1200\,\mathrm{kg}$), traveling due north through an intersection, is hit by a truck (mass $m_T=2000\,\mathrm{kg}$), traveling due east. The two cars are stuck together and slide at an angle of $\Theta=25^\circ$ north of east away from the collision point, leaving behind an 11m long tire track before coming to a stop. The kinetic friction coefficient between the road and the tires is 0.95.
 - (a) Calculate the work done by the friction force to bring the the stuck-together cars to a stop.
 - (b) Calculate the total momentum (x- and y-component) of the stuck-together cars right after the collision.
 - (c) Calculate the speed of each car before the collision.

$$\vec{P}_T = M_T \vec{V}_T \qquad \vec{P}_S = M_S \vec{V}_S$$

$$M = M_T + M_S$$

(b)
$$\Delta K = W_{nc} = W_{nc} = \frac{1}{2} M v_f^2$$

 $\Rightarrow V_f = \sqrt{-2} W_{nc} / M = 14.3 \text{ m/s}$
 $P_{fx} = M v_{fx} = M v_f \cos \theta = 41506 \frac{k_g m}{5}$
 $P_{fy} = M v_{fy} = M v_f \sin \theta = 19355 \frac{k_g m}{5}$

(c)
$$M_5 V_5 = P_{fY} = 0$$
 $V_5 = \frac{P_{fY}}{M_5} = \frac{16.1 \, \text{m}}{\text{s}} = 36 \, \text{mph}$

$$M_7 V_7 = P_{fX} = 0$$

$$V_7 = \frac{P_{fX}}{M_7} = \frac{20.75 \, \text{m}}{\text{s}} = 47 \, \text{mpV}$$