Exam-2 Solutions (Spring 2014)

- 1.) Multiple Choice (18 pts.) For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).
 - (a) When you take a (safe) turn with your car, the static friction force between tires and road provides the necessary centripetal force.

 TRUE FALSE
 - (b) When a box is sliding on a horizontal rough surface, the normal force on the box does not do any work on the box.

 TRUE FALSE
 - (c) If an object doubles its speed, its kinetic energy triples.

 TRUE FALSE
 - (d) If negative net work is done on an object, the object is slowing down. TRUE FALSE
 - (e) When a person climbs a mountain to its top, the work done by gravity on the person depends on the path taken to the top.

 TRUE

 FALSE
 - (f) When two objects collide and stick together thereafter, momentum is conserved in that collision.TRUE FALSE

No.	Points
1	YZ
2	BY
3	IS
4	RR
5	AL
Sum	

2.) Vertical Circular Motion

(20 pts.)

A freight box of mass 42 kg is attached to the end of a massless m long cable which is suspended from the ceiling of a storage hall. A worker passes by and gives the box a nudge to make it swing, reaching a maximal speed of mph. (1 m/s = 2.25 mph)

- (a) At which point in the swinging motion does the box reach the maximal speed, and what is its net acceleration at this point?
- (b) What is the maximal tension in the cable?

$$a_c = \frac{v^2}{R} = \frac{(.5/2.25)^2}{3} = 1.65 \frac{m}{5^2}$$

 $(1 \, mi = 1609 \, m)$ in 0.7s (starting from rest).

- (a) Determine the gravitational acceleration on the planet's surface.
- (b) Determine the mass of the planet and express it in units of Earth's mass, $M_E = 5.97 \cdot 10^{24} kg$.

(a)
$$V = V_0 - \frac{1}{2} \tilde{g} t^2$$
 $Y = 0$
 $V = V_0 - \frac{1}{2} \tilde{g} t^2$ $Y = 0$
 $V_0 = 3m$
(b) $V = \frac{12.2 \frac{m}{s^2}}{R_P^2}$ $V_0 = 3m$
 $V = \frac{12.2 \frac{m}{s^2}}{R_P^2}$ $V_0 = 3m$
 $V = \frac{m}{R_P} = \frac{R_P^2 \tilde{g}}{R_P^2}$ $V_0 = 3m$
 $V = \frac{R_P^2 \tilde{g}}{R_P^2}$ $V_0 = 3m$
 $V_0 = 3m$

4.) Non/Conservative Work

(8+6+4 pts.)

A kid on a sleigh is sliding on a frictionless horizontal snow surface at a speed of $16 \, mph$. They then slide down a frictionless incline of height 5.5 m and afterwards encounter a rough horizontal ice patch of length 7.0m with a kinetic friction coefficient of 0.35 with the sleigh. (1m/s=2.25mph)

- (a) What is the speed of the sleigh at the bottom of the hill, before reaching the ice patch?
- (b) What is the speed of the sleigh after crossing the ice patch?
- (c) If the mass of sleigh+kid is 49kg, how much non-conservative work has been done on them by the ice patch?

$$\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2$$

$$\Rightarrow$$
 $V_f = (v_v^2 + 2gh)^{1/2} = 12.6 \frac{m}{5}$

=>
$$V_f = \sqrt{v_i^2 - 2\mu_k q_5} = 10.5 \text{ m/s}$$

5.) Inelastic Collision

(20 pts.)

A bullett of mass 8.5g and horizontal velocity 630m/s is fired into a block of wood (mass 2.8kg) which is initially at rest on a horizontal frictionless surface. The bullett penetrates the block and emerges with a horizontal velocity of 195m/s (neglect the effect of gravity on the bullett).

- (a) What is the velocity of the block after the collision?
- (b) How much energy has been dissipated due to the deformation in the block?

(a)
$$P_i = P_f$$

=>
$$V_{2f} = m(v_{ii} - v_{if})/M = 1.32 m/s$$

(6) Winc =
$$\Delta E = \Delta K = -\frac{1}{2}mv_{ii}^{2} + \frac{1}{2}mv_{if}^{2} + \frac{1}{2}Mv_{2f}^{2}$$