Exam-1 Solution Key (Sp 16)

- 1.) Multiple Choice (18 pts.) For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).
 - (a) The stopping distance of a car doubles if the speed of the car doubles (assume a constant deceleration).

 TRUE FALSE
 - (b) The magnitude of the centripetal acceleration in uniform circular motion is constant. TRUE $\,$ FALSE
 - (c) The velocity vector in uniform circular motion is constant. TRUE FALSE
 - (d) The gravitational acceleration of a feather is equal to that of a metal block.

 (TRUE) FALSE
 - (e) Newton's three laws of motion are valid in accelerating reference frames. TRUE FALSE
 - (f) If a truck is accelerating horizontally in positive x-direction, a box which rests on its loading bed is accelerated by the static friction force between box and bed. TRUE FALSE

No.	Points
1	CH
2	RR
3	TW
4	TW
5	YZ
Sum	

2.) Free Fall

(21 pts.)

A construction worker on top of a building wonders how tall the building is. He drops a brick from rest and measures the time until impact on the ground to be 3.7s (neglect air resistance).

- (a) How tall is the building?
- (b) How fast is the brick moving just before it hits the ground?
- (c) Sketch the graphs for the brick's speed and height as a function of time.

(a)
$$[y=-\frac{1}{2}gt^2=-67m]$$

3.) Projectile Launch

(21 pts.)

A projectile, starting from rest, is accelerated along a 120 m long ramp at a rate of $0.4 m/s^2$. The ramp is inclined at an angle of 40° above the horizontal. After leaving the ramp, only gravity is acting.

- (a) Calculate the speed of the projectile when leaving the ramp.
- (b) Calculate the maximal height reached by the projectile (relative to the exit point from the ramp).
- (c) Calculate the horizontal displacement of the projectile (relative to the exit point from the ramp) when reaching the maximal height.

(a)
$$V^2 = V_0^2 + 2 \alpha \Delta X$$
 $V_0 = 0$

$$V = \sqrt{2a\Delta x} = 49.6 \frac{m}{5}$$

(b)
$$V_y^2 = V_{on}^2 - 2g \Delta y \stackrel{!}{=} 0$$
 of maximal height

$$\Rightarrow \Delta V_{max} = \frac{V_{oy}^2}{2g} = \frac{V^2 \sin \theta}{2g} \qquad V_{oy} = V \sin \theta$$

$$\Delta y_{\text{max}} = 52.6 \text{ m}$$

 $\Delta X = 125 \text{m}$

(c)
$$\Delta x = V_{0x} t$$

$$= V \cos \theta t$$

$$= V^{2} \sin \theta \cos \theta$$

$$= \frac{V^{2} \sin \theta \cos \theta}{g}$$

$$= \frac{V_{0x} + V_{0x} + V_{0x}}{g} = 5.10 \le 0$$

A uniform metal chain with a total mass of $150\,kg$ can sustain a maximal tension of $4000\,N$ in each of its identical links. The chain is deployed to lift a boulder of ore (mass $220\,kg$) attached to its end out of a quarry straight up.

- (a) Which link along the chain experiences the maximal tension?
- (b) What is the maximal acceleration with which the boulder can be lifted?

(b) for the upper most link

$$\Xi | F = ma \leq T_{max} - mg \qquad m = M_{chain} + m_{ore}$$

$$\Rightarrow \boxed{\alpha \leq \frac{T_{max}}{m} - q} = 1.01 \frac{m}{5^2} \triangleq a_{max}$$

5.) Friction and Normal Forces

(5+10+10 pts.)

A dock worker pulls on a box (mass 85 kg) with force of 300 N at an angle of 10° above the horizontal. The static and kinetic friction coefficients between the box and the horizontal ground of the dockyard are 0.45 and 0.25, respectively.

- (a) Draw the free-body diagram of the box.
- (b) If the box is initially at rest, can the worker overcome the static friction force?
- (c) If the box is moving, what is its acceleration?

(a)

(b)
$$m \alpha_x = F_A \cos \theta - f_S = F_A \cos \theta - \mu_S F_N$$

cannot get it moving

$$\Rightarrow \alpha_{x} = \frac{100.2}{85} = 1.18 \frac{M}{52}$$