Name(s):

Homework Assignment #6

(Due Date: Wed, 11/14, 04:10 pm, in class; Show all your work for full/partial credit)

- 6.1 Relativistic Muon Plane Wave (cf. Prob. 6.3 in textbook) (2 pts.) A freely moving muon (mass $m_{\mu}c^2=105.6\,MeV$) is described by the wave function $\psi_{\mu}(x,t)=A\cos(kx-0.8t)$ where t is measured in fm/c. Calculate the muon's
 - (a) frequency ω (in Hz) and corresponding total energy E (in MeV);
 - (b) momentum in (MeV/c) and de Broglie wavelength (in fm).
- 6.2 Gaussian Wavepackage and Schrödinger Equation (cf. Prob. 6.3 in textbook) (2 pts.) A localized electron at rest has a wave function $\psi(x)=A\exp(-a^2x^2)$ with a=0.5/nm.
 - (a) Use the results from class to quote it's space and momentum uncertainty.
 - (b) Use the static Schrödinger equation to calculate the pertinent potential, U(x).
- 6.3 Bound Protons in a Nucleus (cf. Prob. 6.9 in textbook) (5 pts.) The average potential experienced by protons $(m_p=939 \, MeV/c^2)$ in a Ca nucleus may be schematically given by an infinite 1-D square well of length $L=8 \, fm$.
 - (a) Determine the proton wavefunction for the 2 lowest-lying states by solving the Schrödinger equation with boundary conditions (no need to normalize).
 - (b) Calculate the 2 lowest momentum values and corresponding energy levels.
 - (c) Calculate the wavelength of photons required to excite the proton from the ground into the first-excited state.
 - (d) Use the uncertainty principle to estimate the percentage uncertainty in the momentum of the ground-state proton (assume $\Delta x = L$).
 - (e) If the typical distance between two protons in the nucleus is 2.5 fm, compare the potential energy from electric repulsion with the energy-level spacing in the nucleus (generated by the strong nuclear force).
- 6.4 Localized Electron Wavefunction (cf. Prob. 6.29 in textbook) (2 pts.)

 An electron is described by the wavefunction

$$\psi(x) = \begin{cases} 0 & , & x < 0 \\ Ce^{-ax}(1 - e^{-ax}) & , & x \ge 0 \end{cases}$$
 (1)

with $a=2nm^{-1}$ and an unknown constant C.

- (a) Determine the normalization constant C; sketch the wave function in a graph.
- (b) What is the most likely position, x_{max} , of the electron? (*Hint: equate the derivative of* $\psi(x)$ *to zero*)