High precision half-life measurement in ³⁸Ca

H. I. Park, J. C. Hardy, V. V. Golovko, V. E. Iacob, N. Nica, A. Banu, L. Trache, R. E. Tribble, and Y. Zhai

It has been recently argued that the nuclear-structure-dependent corrections can be tested against experiment in the context of the unitarity test of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1]. The test is based on how well the calculated corrections convert the scatter in the uncorrected *ft* values for many transitions into a consistent set of corrected $\mathcal{F}t$ values for all transitions, as required by CVC. The decay of ³⁸Ca is a good case to investigate for this purpose since, for the superallowed transitions, the calculated nuclear-structure-dependent correction is larger than that of any of the nine well-known nuclei (¹⁰C, ¹⁴O, ^{26m}Al, ³⁴Cl, ^{38m}K, ⁴²Sc, ⁴⁶V, ⁵⁰Mn, ⁵⁴Co) [2]. If the measured *ft* value with large calculated nuclear-structure-dependent corrections converts into the average $\mathcal{F}t$ value established from these well-known cases, then it further demonstrates the calculation's reliability for the smaller corrections. For the *ft* value to be useful for this purpose, it is necessary to measure the half-life with a high precision of 0.1%.

The half-life of 38 Ca was measured via the 1 H (39 K, 2n) reaction at a primary beam energy of 30A MeV. The MARS spectrometer provided a pure 38 Ca beam from the fully stripped reaction products at the extraction slits in the focal plane. This beam exited the vacuum system through a 50μ m-thick Kapton window, passed through a 0.3-mm-thick BC-404 scintillator and a stack of aluminum degraders, and finally stopped in the 76μ m-thick aluminized Mylar tape of a fast tape-transport system. We collected the activity of 38 Ca on the tape for 0.5 s. At the end of the collection time, the beam was interrupted and the collected sample was moved in 196 ms to the center of a 4π proportional gas counter. Signals from the counter were multiscaled for 15 s, and separate decay spectra were recorded. For the measurement of a highly precise half-life, this "collect-move-count" cycle must be repeated until high statistics are obtained. In a preliminary test run, over 18 million β events were recorded under various detecting conditions, with different settings for dominant dead time, bias voltage of the detector, and threshold of the discriminator. The data analysis is currently underway.

- [1] I. S. Towner and J. C. Hardy, Phys. Rev. C 66, 035501 (2002).
- [2] J. C. Hardy, Nucl. Phys. A752, 101c (2005).