
## Study of low-lying resonant states in <sup>16</sup>F using an <sup>15</sup>O radioactive ion beam

V. Z. Goldberg, D. W. Lee, <sup>1,2</sup> K. Peräjärvi, <sup>1</sup> J. Powell, <sup>1,3</sup> J. P. O'Neil, <sup>3</sup> D. M. Moltz, <sup>4</sup> and Joseph Cerny <sup>1,4</sup>

A 120 MeV <sup>15</sup>O radioactive ion beam with an intensity on target of 4.5×10<sup>4</sup> pps has been developed at the 88-inch cyclotron at the Lawrence Berkeley National Laboratory [1]. This beam has been used to study the level structure of <sup>16</sup>F at low energies via the p(<sup>15</sup>O,p) reaction using the thick target inverse kinematics method [2] on a polyethylene target. The experimental excitation function was analyzed using R-matrix calculations. Significantly improved values for the level widths of the four low-lying states in <sup>16</sup>F are reported. The spectroscopic factors are obtained using the experimental level widths and on the basis of the Coulomb shifts of the mirror levels in <sup>16</sup>N and <sup>16</sup>F. Good agreement with the theoretical spectroscopic factors is also obtained. Fig.1 presents the excitation function for the <sup>15</sup>O+p elastic scattering at 180<sup>0</sup> (0<sup>0</sup> in the laboratory system).



**Figure 1**. The R-matrix fit for the low-lying states in <sup>16</sup>F. The solid line represents the R-matrix calculation added to the background; the background function is shown as a dashed line.

[1] F. Q. Guo et al., Phys. Rev. C 72, 034312 (2005).

[2] K. P. Artemov et al., Sov. J. Nucl. Phys. 52, 408 (1990).

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Department of Nuclear Engineering, University of California, Berkeley, California 94720
Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Department of Chemistry, University of California, Berkeley, California 94720