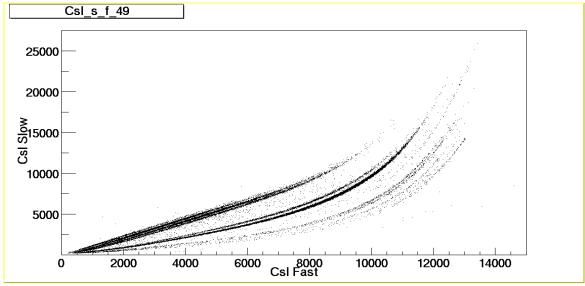
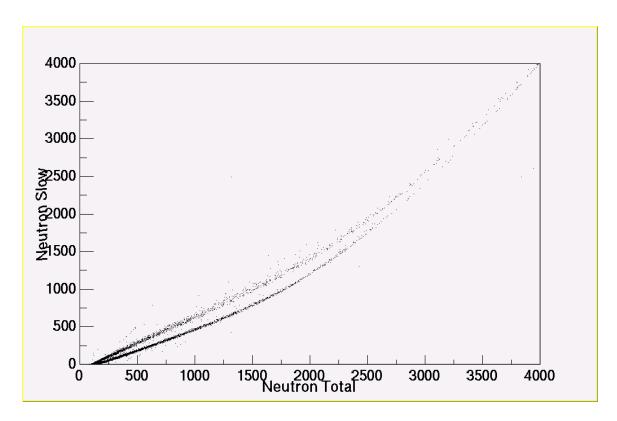
P-A Collisions with NIMROD


L. J. Qin, R. Wada, J. S. Wang, K. Hagel, M. Murray, Y. G. Ma, and J. B. Natowitz

Results from investigation of the dynamics of a large series of heavy ion reaction studies carried out in recent years indicate that much of the early particle emission may be attributed to nucleon-nucleon collisions occurring during the thermalization stage of the reaction. In order to better characterize the early stage emission we have carried out a series of experiments in which the reactions of ¹¹²Sn and ¹²⁴Sn with a wide range of projectiles, ranging from p to ⁶⁴Zn, all at the same energy per nucleon were studied. This is the thesis project of L. J. Qin. The systems studied included:


$^{1}H + ^{112}Sn$	$^{1}H + ^{124}Sn$	$^{2}H + ^{112}Sn$
$^{2}H + ^{124}Sn$	3 He $+^{112}$ Sn	3 He $+^{124}$ Sn
$^{4}\text{He}+^{112}\text{Sn}$	4 He $+^{124}$ Sn	$^{10}B+^{112}Sn$
$^{10}B + ^{124}Sn$	20 Ne $+^{112}$ Sn	20 Ne $+^{124}$ Sn
40 Ar+ 112 Sn	40 Ar+ 124 Sn	64 Zn+ 112 Sn

By careful comparisons of the yields, spectra and angular distributions observed for these different systems we expect to be able to cleanly separate emission resulting from nucleon-nucleon collisions from that resulting from the thermalized system and obtain a much cleaner picture of the dynamic evolution of the hotter systems. Fig. 1 illustrates the isotopic identification spectrum for light particles in the reaction ¹⁰B+¹¹²Sn.

In order to extract more information on the excitation energy and refine coalescence model treatments which we expect to apply to these data [1], we also used five small neutron detectors belonging to the Laval University group to make simultaneous measurement of neutron spectra. Fig. 2 shows the Neutron Identification Spectrum obtained with one of these detectors.

Figure 1: Particle Identification in a CsI Detector. A plot of the slow scintillation component versus the cast component allows discrimination of different light particles, p, d, t, 3 He, and α as well as some heavier species.

Figure 2: Neutron and γ ray discrimination in the neutron detector module.

The complete analysis of these experiment data is under way.

References

[1] K. Hagel et al., Phys. Rev. C 62 (2000).