The β^+ Decay of ³⁴Ar

V. E. Mayes, J. C. Hardy, V. E. Iacob, M. Sanchez-Vega, A. Azhari, C. A. Gagliardi, J. Giovinazzo^a, R.

G. Neilson, L. Trache, R. E. Tribble and Y. M. Xiao

^a Centre d'Etudes Nucleaires de Bordeaux- Gradignan, IN2P3/CNRS, France

We chose ²²Mg as the first new superallowed β emitter to study because its calculated charge correction, δ_{C} , has the very low value 0.26%, and because 22 Mg has no β decay branch feeding its daughter's groundstate; thus, its β -decay branching ratios can be determined entirely from the relative intensities of its β -delayed γ -rays. We have now chosen 34 Ar ($t_{1/2} = 0.84$ s) as the second case to study for two reasons: 1) Its calculated charge correction is 0.68%, higher than any other known case, and consequently it offers an important test [1] of the $\delta_{\rm C}$ calculations; and 2) it is the case next most tractable to experimental precision after ²²Mg. The superallowed β -decay branch from ³⁴Ar, which directly populates the ³⁴Cl ground state, accounts for 94% of its total decay strength. This means that, unlike ²²Mg, the branching ratios in the decay of ³⁴Ar require a measurement of the *absolute* intensities of the β delayed γ -rays from the non-superallowed normally transitions а challenging requirement. However, because these transitions comprise less than 6% of the total decay strength from ³⁴Ar, they need only be determined to a precision of 2% in order to yield 0.1% precision on the superallowed branch.

We plan to measure both the branching ratio and half-life of ³⁴Ar at the cyclotron. A test run with MARS in March yielded a beam of ³⁴Ar with ~95% purity. We produced this beam using the reaction $p(^{35}Cl, 2n)^{34}Ar$, with a 30*A* MeV beam from the cyclotron bombarding a LN₂-cooled hydrogen gas target. After MARS

had been optimized, we observed ~5000 ³⁴Ar ions per second at its focal plane. This beam was extracted from MARS through a Kapton window, then passed though a thin scintillator and a stack of aluminum degraders, and finally was implanted in the aluminized Mylar tape of the fast tape-transport system. (For a more complete description of the experimental arrangement, see [2].) Each collected sample was conveyed to a shielded counting station, where it was positioned between a thin plastic scintillator and a 70% HPGe detector. There, we recorded β - γ coincidences event-by-event. A counting cycle consisted of a 2-s collection period, a 180-ms transfer time and a 2-s counting period. The accelerator beam was off during the transfer and counting periods.

This cycle was clock-controlled and was repeated continuously. The coincident γ -ray spectrum obtained in this way is shown in Figure 1. Although the counting statistics are

Figure 1: Coincidence (-ray spectrum at 15 cm from March run.

very low, there is no evidence of any radioactivity other than 34 Ar.

The energy-level diagram for the decay of ³⁴Ar is shown in Figure 2, and the current values for the known γ -ray intensities and β branching ratios are shown in the table. It is evident from the spectrum that we observe all of the γ -rays known to be emitted in the decay of ³⁴Ar. Furthermore, the spectrum is substantially cleaner than the best spectrum obtained previously [3]. A preliminary analysis of the γ -ray intensities in this spectrum gives a result for the intensity of the 461 keV γ -ray relative to the one with 666 keV of 0.35 ± 0.04 , in good agreement with the prior results[3].

In order to determine intensities for all of the γ -rays, it will be necessary to extend our current efficiency curve for the HPGe detector from 1800 keV to 3200 keV. This will be accomplished using a ⁵⁶Co source. In addition, Monte Carlo simulations are currently being performed in order to determine the limits of our precision in measuring the half-life of ³⁴Ar with the 4π β -detector [4]. Measurements of this half-life are complicated by the fact that the daughter of ³⁴Ar is ³⁴Cl, which has a similar short half-life ($t_{1/2} = 1.53$ s). Any measurement

Table 1: Branching ratios and relative $\gamma\text{-ray}$ intensities for ^{34}Ar

Excitation Energy (keV)	Relative intensity of γrays (%)	Branching ratios (%)
0	0.00	94.4 <u>+</u> 0.25
461	36.5 <u>+</u> 3.6	0.91 <u>+</u> 0.10
666	100	2.49 <u>+</u> 0.12
2580	34.5 <u>+</u> 1.0	0.86 <u>+</u> 0.12
3129	52.1 <u>+</u> 1.2	1.30 ± 0.10

Figure 2: Energy level diagram for the decay of ³⁴Ar

of β -particles alone will include the growth and decay of ³⁴Cl along with the decay of ³⁴Ar. If we cannot obtain sufficient precision with the 4π detector, it will then be necessary to consider another method for measuring the half-life, such as the β - γ coincidence method, in order to differentiate between the decay of ³⁴Ar from that of ³⁴Cl.

References

[1] J. C. Hardy *et al., Progress in Research,* Cyclotron Institute, Texas A&M University (2000-2001), p. I-24.

[2] M. Sanchez-Vega *et al., Progress in Research,* Cyclotron Institute, Texas A&M University (2000-2001), p. I-27.

[3] J. C. Hardy *et al.*, Nucl.Phys. **A223**, 157 (1974).

[4] V. I. Iacob *et al., Progress in Research,* Cyclotron Institute, Texas A&M University (2000-2001), p. I-30.