K-shell Ionization by Secondary Electrons
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The method developed previously [1] for
calculating the K-shell ionization probability for
Cu target atoms bombarded by secondary electrons
produced in collisions with 10 MeV/u beams of Kr,
Xe and Bi has been improved in several areas. This
has resulted in better agreement between the results
of calculations and measurements. In addition, the
previously reported discrepancy by about a factor
of 7 was traced down to the erroneously omitted
factor of 2 (~ 6.28).

The calculations are based on the
following scenario. A heavy-ion projectile travels
inside the target gradually losing its energy with
negligible angular straggling. (a) At some depth z
inside the target the projectile collides with a
target-atom electron. The electron emerges from
the collision as a binary encounter (BE) electron
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with kinetic energy E_, traveling in the direction
defined by the polar angle 6 and the azimuthal
angle ¢. The y axis is chosen to be in the upward
direction. (b) The BE electron gradually loses its
energy in soft collisions with other target electrons
and nuclei and at some point it ionizes a target-
atom K-shell electron. It is assumed that the range
of the BE electron is small compared to the
diameter of the target and the target-to-detector
distance, but not necessarily small compared to the
target thickness. (c) The K vacancy produced in the
collision decays via the emission of a secondary Ka
x ray, which is subsequently detected. The number
of detected target-atom Ka x rays per beam
particle Ny.(Ka)/N, is then equal to
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where P,, P, and P, respectively, are the probabilities for the events (a), (b), and (c) described above. The

probability P, is given by the following expression:
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is the doubly differential cross section for the
production of BE electrons in collisions between
projectile nuclei and target-atom electrons in the
laboratory-frame, calculated in the impulse
approximation. It was derived by transforming the
corresponding expression [2] from the center-of-
mass frame. In the equations above, dQ =
d(cos0)de is the differential emission solid angle

and
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is the electron kinetic energy in the center-of-mass
frame. The quantities t =m, w*/2 and s = m, W
are usually referred to as the cusp energy and cusp
momentum, respectively, where m, is the electron
mass and
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is the velocity of the center-of-mass. Here V(z) is
the projectile velocity in the laboratory frame at
depth z inside the target, while N, is Avogadro’s
number. The projectile and target-atom molar
masses are A, and A, respectively, D is the
maximum target depth (effective thickness), and
p,is the target density. The quantity E in Eq. (3) is
the binding energy of the ejected target electron,
while Z, and Z, are the projectile and target atomic
numbers, respectively. In the calculations, the
dependence of projectile velocity on depth inside
the target was calculated using the method of
Ziegler [3].

The z-component of the target electron
momentum is given by

p,=s[1 —\/(ECM+EB”)/1‘],

while its distribution (Compton profile) is defined
in terms of the bound electron’s wave function y in
momentum space as

Jp) = [[w@)Ndpdp, .
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The function J(p,) is symmetric about p, = 0.
Moreover, since the target atoms are randomly
oriented, its variance is equal to one third of the
average value of | p [, so that

o?=2m E;/3. (8)

For the purpose of this work, J(p,) was
approximated by a Gaussian having centroid equal
to zero and standard deviation equal to o;.

The probability P, is given by the
following expression:
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in which R 4 is the effective range inside the target
of the BE electrons emitted at depth z with kinetic
energy E, in the direction defined by the angles 0
and ¢ before their energy drops below the threshold
energy E, = 8.98 keV [4] for target-atom K-shell
jonization. The quantity " is the effective cross
section for K-shell ionization of target atoms by
these electrons.

The effective electron range R is related
to the nominal range R, which in turn is related to
the stopping power. The stopping power was
calculated using the relativistic Bethe formula with
the Bloch correction [5] and then fit with a function



S(E)=E'™/(nA). (10)
R was then obtained in the form
R=A[E-E]]. ()

The best fit values of the parameters A (multiplied
by p,) and n (for E in keV) were found to be 5.510
ug/cm? and 1.765, respectively.

If a BE electron remains inside the target
while its kinetic energy is above the threshold
energy for target-atom K-shell ionization, its
effective range R ¢ is equal to its nominal range R.
If, on the other hand, the BE electron leaves the
target with kinetic energy greater than the threshold
energy for target-atom K-shell ionization, its
effective range will be equal to its actual path
length inside the target, which is smaller than its
nominal range. The effect of target thickness on the
effective range of electrons was taken into account
by assuming a straight-line path of the BE
electrons. In this
geometrical arguments, it can be shown that
electrons emitted at depth z towards the target back
surface in the direction specified by the polar angle
U and the azimuthal angle ¢ travel the distance

case, following simple

rp = (D - z) / (cosD + sinD sing) (12)
before they leave the target, assuming that the
target is tilted 45° (relative to the projectile
direction) about the x axis and that the back
surface of the target is facing up. It is also implied
that sing > -cotd (for emission in the direction of
the target back surface). Similar considerations
involving the target front surface lead to the
expression for the distance traveled ;

1z = - z/ (cosD + sinD sing) , (13)
where it is implied that sing < -cotD. The effective
range of the BE electrons is then equal to

Rg=min (R, 1), (14)
where r is equal to ry or r, whichever applies for
the given values of ¥ and ¢. Finite target thickness
effects were found to be important. They reduce the
calculated number of secondary Cu Ka x rays per
beam particle by as much as 46 % at D values as
large as 1 mg/cm?, compared to the calculations in
which finite target thickness effects are not taken
into account.

The cross section o, is the average value
of the cross section for Cu K-shell ionization by
electron impact and includes contributions (with
the appropriate statistical weights) from electrons
having energies at the time of impact between their
initial energy and zero. It was discussed in full
detail in the previous report [1].

Finally, P(z) is given by the expression

P(2) = w e exp(-pz) , (15)
where o is the target-atom fluorescence yield for
Ka x rays, € is the detection probability, and p is
the x-ray attenuation coefficient for Cu Ka x rays
in the Cu target.

BE electrons can be produced also by the
elastic scattering of projectile electrons from target
nuclei. However, the relative contribution from this
process to secondary Cu Ka x ray production is
expected to be small. According to Shima [6], the
average number of electrons n, attached to 10
MeV/u Kr, Xe, and Bi projectiles in copper is 4.2,



8.8, and 18.3, respectively, which is significantly
less than the number of target electrons per atom
(Z,= 29). Furthermore, the nuclear charges of the
projectiles (36, 54, and 83), are larger than the
nuclear charge of copper. Therefore, keeping in
mind that the doubly differential cross section for
BE electron production scales with square of the
nuclear charge, it follows that the contribution of
projectile electron elastic scattering from target
nuclei is smaller than the contribution of target
electron elastic scattering from projectile nuclei by
a factor of Z, n/Z,* which is only 8 % for Bi
projectiles. The contribution from projectile
electrons is further reduced as a consequence of the
following: (a) on average, the projectile electrons
are more tightly bound than the target electrons and
hence, their scattering cross sections are smaller,
and (b) the scattered projectile electrons have lower
average energies than the scattered target electrons
and hence, the fraction of high-energy BE electrons
is smaller.

The intensity of Auger electrons emitted by
the projectiles is expected to be very small. This is
because (a) at 10 MeV/u the projectiles are highly
stripped inside the target, so that the number of
possible Auger transitions is limited, and (b) Auger
yields are small for heavy ions. Furthermore,
Auger electrons emitted from target atoms have
energies that are normally below the threshold for
K-shell ionization of other target atoms.

Calculated contributions from Ka x-ray
production by BE electrons to the Ka diagram line
peaks in Cu x-ray spectra, as a function of target
thickness are compared with the measured values
[7] in Figure 1. It is evident that the calculations
agree rather well with the measurements both in
terms of the dependence on target thickness and
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projectile atomic number. It should be noted that
the calculated values scale with the square of the
projectile atomic number.
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Figure 1. Number of detected secondary Cu Ka x
rays as a function of target thickness in collisions
with 10-MeV/u Kr, Xe, and Bi projectiles. The
experimental data are represented by filled circles,
while squares connected by dashed lines show the
calculated contribution from fluorescence by
secondary x rays. Calculated contributions from
binary encounter electrons are represented by
diamonds connected by dashed lines. The sum of
the x-ray fluorescence and binary encounter
electron contributions is shown by solid lines.
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