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This work deals with the classical textbook
exercise of a wave packet interacting with an
attractive well [1]. Despite being a thoroughly
studied example of quantum scattering for plane
wave stationary states, the effect to be presented
here for wave packets was yet to be found.

A one-dimensional attractive well can either
reflect or transmit a wave. Reflection and trans-
mission coefficients are the simplest scattering
amplitudes. They can easily be calculated for
a square well by using plane waves and elemen-
tary continuity conditions. The analysis of the
exact time development of a packet, as well as
the treatment of realistic well shapes, is however
reserved for numerical treatment.

We here show that wave packet scattering pos-
sesses an intriguing aspect: Packets that are nar-
rower than the well width initially, resonate in-
side it, generating a reflected wave that is co-
herent and monochromatic in amplitude, a poly-
chotomous wave train.

Polychotomous (multipeak) waves are ob-
served when a superintense laser field focuses on
an atom [2]. Ionization is hindered and the wave
function is localized, in spite of the presence of
the strong radiation field. The wave packet rep-
resenting the excited electron eventually spreads
and the degree of localization and/or ionization
depends on the parameters of the radiation field.
The above effect appears when the external field
operates on a bound state.

The effect may be tested in back angle nuclear
reactions and an estimate of the energy, projec-
tiles and candidate targets will be given below.
The effect is analogous to lasing inside a cav-
ity, the well becomes then the most natural laser
available.

Consider a minimal uncertainty wave packet
traveling from the left with an average speed
v, initial location zp, mass m, wave number
q = m v and initial width §,

Y = Cexp(iq(w—xo)- (""“‘“)2) (1)
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impinging on an attractive well located at the
origin, with depth A and width w. For the sake
of simplicity we use an exponential well, but the
results are not specific to the type or shape of
the well
2
Viz)=-A e:rp(—F) (2)

We solve the Schrodinger equation for the scat-
tering event in coordinate space taking care of
unitarity. We use the method of Goldberg et al.
(3], that proved to be extremely robust and con-
serves the wave normalization with an error of
less than 0.01 %, even after hundreds of thou-
sands of time step iterations. We have verified
that the solutions actually solve the equation
with extreme accuracy by explicit substitution.
Other simple discretization methods of resolu-
tion such as Runge-Kutta, leapfrog, etc., are un-
stable for this type of equation, they violate uni-
tarity.

We study the scattering of an impinging
packet with § = 0.5 and a well width of w = 1.
We also use a large mass m = 20 in order to
prevent the packet from spreading too fast [1].

A polychotomous (multiple peak) wave re-
cedes from the well. For low velocities, corre-
sponding to average packet energies less than
half the well depth, several peaks in the reflected
wave show up. Simple inspection reveals that the
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distance between the peaks is constant. The re-
flected wave is propagating with an amplitude of
the form

C(z) = e~ sin?(kz) (3)
The exponential drop is characteristic of a
bound state solution inside the well. The pa-
rameters A ad k, are independent of the initial
velocity, but depend on time. The wave spreads
and its amplitude diminishes, as expected. We
have checked that the polychotomous behavior
continues for ¢ — oo without modification.

The transmitted packet travels at a different
velocity than that the coherent reflected packet.
The reflected packet travels with a constant
speed of v = k(tformation)/m. The speed can be
found by evaluating the effective center of mass
X

—w
Keen= [ dzx p(a)f? @
-0
Where the wave function is properly normalized
to 1. Using the above equation one finds that the
reflected wave center of mass recedes with a con-
stant speed of approximately v = 0.03 indepen-
dent of the initial speed of the incident packet,
while the transmitted wave rides away with a
velocity slightly higher than the initial packet
average velocity, and it is determined by overall
energy conservation.

The polychotomous effect disappears when the
wave packet is broader than the well.

We have also investigated other types of wells,
such as a Lorentzian well, a square well, etc.,
and found the same phenomena described here.
Moreover the effect is independent of the shape
of the packet as long as it is narrower than
the well width. We have used square packets,
Lorentzian packets, linear exponential packets,
etc., with analogous results.

Let us consider now the conditions for the ef-

fect to be measured experimentally. Con-
sider for example backward angle scattering of
neutrons, or protons on nuclei. Although our
treatment was one-dimensional, it should apply
also for the case of zero angular momentum in
three dimensions. Typical nuclear well depths
are around 30 MeV, with widths of around a few
Fermi for light nuclei, hence k¥’ 2 1.25fm~!. The
condition for the excitation of the metastable res-
onance in the well and the coherence of the re-
flected wave can be met easily. For a nucleon of
20 MeV energy we find that a 30 MeV well satis-
fies the condition if it exceeds 3 Fermi in radius.
A nucleus like O'® may very well serve for that
purpose. The kinetic energy of 20 MeV is above
the Coulomb barrier for light nuclei, hence we
do not expect major distortions in the reflected
wave when protons are used. Conversely, the ef-
fect may serve as a method to determine nuclear
well depths (or radii) by merely registering the
dead time between bunches in the reflected wave
beam. The effect may also be tested in atomic
collisions at backward angles.
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