Decay To Bound States Of A Soliton In A Well
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Topologically stable solitons arise in field the-
ories with nonlinear self-interactions. When a
soliton scatters off an attractive impurity it may
be trapped [1, 2](see also ref. (3, 4]). This behav-
ior can be understood in terms of a few degrees
of freedom for the soliton [1]. We here address
the decay of the soliton from a trapped state to
a bound state.

Consider the kink lagrangian

Here
A=X+V(z)

A being a constant, and V(z) the impurity po-
tential [2]
V(z) = h cosh™? (a, (z - xc)) (3)

Independently of the choice of parameters it is
found that trapped states decay. When the soli-
ton reaches the well, it oscillates and starts to
emit radiation. The emission of radiation damps
the oscillations. After a certain time, and due
to the finite extent of the x-axis, radiation re-
flects back from the boundaries and reaches the
soliton. The soliton subsequently absorbs the ra-
diation and its amplitude starts to increase. The
time taken for radiation to return to the soliton
is the travel time for the fastest 'mesons’ of the
theory.

The dispersion relation for the radiated
mesons can be extracted from the expansion of
the scalar field around the soliton solution. Us-
ingA = m =1 we find w? = k2 + 2. The
velocity of the mesons is bounded by

Umaz = %) = 1.
mazx

The frequency of the oscillations of the soliton
in a trapped state may be estimated analytically.
Using an expansion of the potential in eq. (3)
around the bottom of the well V(z) =~ —Vp +
€y%, y = —z, and an ansatz appropriate for
small oscillations of the soliton around the center
of the well ¢ = (y+6 y3/2) sin(w(t—tp)) we find
wi=2pu.

With u = £,/ #e + (Vo — 1). (The positive
solution has to be chosen)

The formula compares reasonably well with
the leading frequency of oscillation of the soliton
inferred from a Fourier analysis of the amplitude
of the field at the center of the well. However,
the fluctuation of the soliton in the well is an-
harmonic.

After emission of radiation the soliton becomes
bound in the well. These bound states exist not
only for a soliton centered with the well, but
also for a soliton located off-center. The for-
mer are produced after the soliton radiates its
kinetic energy, while the latter seem more dif-
ficult to realize. Perhaps multisoliton collisons
may lead to a degradation of the kinetic energy
of one such soliton off-center thereby trapping it
at rest in a location at which it would be unstable
as a classical particle. This phenomenon has no
counterpart in the classical behavior of particles.
Only the bottom of the well is a stable point for
the particles. Again, it seems that the extended
character of the soliton is playing a major role in
generating such unexpected solutions.

It is clear that these off-center solutions are
true bound states, because their energy is smaller
than the free soliton mass. However, any small
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perturbation of the soliton will make it drift to [2] G. Kélbermann, Phys. Rev. E55, R6360
the center of the well. The off-center solutions (1997).
are in this sense unstable.

We found the bound state solutions, by inte- 3] J. A Gonzalez and B. de A. Mello, Phys.
grating the static equations of motion starting Scripta 54, 14 (1996),
from the ceflter of the soliton. There appez.a.rs to [4] J. A. Gonzalez, B. de A. Mello, L. L. Reyes
be only a single bound state for each choice of and L. E. Guerrero, Phys. Rev. Lett. 80
well depth and width, even for large well depths. (1998) 1361.
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