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Nuclear excited states below the particle emis-
sion threshold typically undergo v-decay to lower
lying states. These decays result in the ini-
tial states having their own natural width. In
the case when v-emission is the only open de-
cay channel, the natural width, Iy, is typically
~eV.Ifa particlfa bound excited state lies very
close to the particle threshold, the natural width
can result in the tail of the wave function ex-
tending above the particle threshold. Due to
this tail, the subthreshold bound state can be-
have like a resonance state in a capture reaction.
Such states are often referred to as subthresh-
old resonance states [1] and they can play an
important role in determining reaction rates of
interest in nuclear astrophysics. It is shown that
the ANC of a subthreshold bound state defines
the normalization of both direct radiative cap-
ture leading to this state and resonance capture
in which the state behaves like a subthreshold
resonance. A determination of the appropriate
ANC(s) thus offers an alternative method for
finding the strength of these types of capture re-
actions, both of which are important in nuclear
astrophysics. We present here useful relations
showing the connection between the asymptotic
normalization coefficient (ANC) and the fitting
parameters in K — and R—matrix theory meth-
ods which are often used when analyzing low en-

ergy experimental data.

Consider the capture of particle b by particle
a at very low relative kinetic energy E and as-
sume that there is a subthreshold bound state c1

in the system ¢ = (ab). There are three possible
mechanisms by which the capture can occur:

(i) direct radiative capture to the ground state
¢

(ii) radiative capture to the ground state through
the subthreshold resonance;

(iii) direct radiative capture into the subthresh-
old bound state with y-emission.

Process (ii) corresponds to non radiative capture
of particle b into the subthreshold resonance cl.
The excited state then undergoes y-decay to the
ground state c. The energy of the emitted pho-

ton is
(1)

where ¢, is the binding energy of the ground state

E,=F +e¢.,

¢ = (ab). Note only one gamma is emitted in the
process and it occurs after capture into the cl
state. Process (iii) results initially in a photon
with energy
E,=FE +eéa. (2)
The subthreshold bound state cl is then deex-
cited to the ground state ¢ by emitting a photon
with energy £.—¢c;. Note that in mechanisms (ii)
and (iii) the capture occurs into the same state,
but in (ii) this state reveals itself as a resonance,
while in (iii) it acts as a real bound state. All
three of these capture processes occur in nature
and are important in determining reaction rates
for nuclear astrophysics.
In previous papers (see [2] and references
therein) we have pointed out that the overall
normalization of the cross section for a direct ra-

diative capture reaction at low binding energy is
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entirely defined by the asymptotic normalization
coefficient of the final bound state wave function
into the two-body channel corresponding to the
colliding particles. In this work we show how
to extend this to capture into subthreshold reso-
nance states. In what follows we use the system
of units in which A =¢ = 1.

Among the important relationships found in
our work we would like to present here the as-
trophysical factor at E — 0 for the capture to

the subthreshold resonance:
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where ', is the ¥ width of the subthreshold res-
onance, 17),; is the Coulomb parameter of the
bound state ¢l and . is the wave number of
the bound state ¢1. Thus we have shown that
the ANC of the subthreshold bound state defines
the overall normalization of the the astrophysi-
cal factor for the capture into the subthreshold
resonance at £ — 0.

We derived also the connection between the
scattering length and the ANC:
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(4)

Finally we present the relationship between
the partial width of the subthreshold resonance
cl at E > 0 in the R-matrix method and the
ANC:

method. When deriving Eq. (5) we used the con-
nection between the ANC and the dimensionless
effective reduced width amplitude 8., of the sub-
threshold bound state c1:
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(6)
where 7., is the effective reduced width of c1. It
follows from derived equations that by indepen-
dently measuring the ANC for the subthreshold
bound state, one can calculate the astrophysical
factors for direct capture into the subthreshold

bound state and subthreshold resonance.
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where Vi(E) = 2kroP(E), P/(E) is the penetra-

tion factor, W_,_ 14172 is the Whittaker func-

tion and rg is the channel radius in the R-matrix
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