Saturday Morning Physics 2008 at A&M:

From the Micro-World to the Universe

Ralf Rapp
Cyclotron Institute
+ Physics Department
Texas A&M University
College Station, USA

SMP-2008 Lecture 7
Texas A&M University, College Station, 29.03.07

Outline

- 1.) Overall Structure of SMP08 Lectures
- 2.) From Particles+Forces to the Universe
 - Force Properties and Proton Structure
 - The Role of Fundamental Forces in the Cosmos
- 3.) Gravity and Dark Matter
- 4.) Weak Force and Universality
- 5.) Nucleosynthesis, Stars and the Universe's Fate
 - Supernovae: Nuclear Burning + Expansion of the Universe
 - Neutron Stars
- 6.) Concluding Remarks

1.) From the Smallest to the Largest

- 20th (and 21st ?!) century: tremendous progress in our understanding of elementary particles + their interactions
- Also true for the origin and evolution of the Universe
- Intimate relations between the subatomic and the cosmic world unraveled
- early example (17th century): Newton discovered the connection between the falling apple and planetary motion (universality of gravity!)
- SMP2008 was an attempt to illuminate some of these fascinating discoveries in Nuclear/Particle/Astrophysics (and exhibit open problems ...)

1.2 Topical Structure of SMP08

2.) Known Particles + Forces in the Universe

- "Standard Model of Particle Physics"
- based on symmetry principles:
 matter particles interact via force carriers
 - stable matter: **u** , **d** , **e** , **v**_e
 - 2 more "generations" (heavier + short-lived)
 - bare masses: $m_{i,d} = 5 \text{ MeV} \dots m_t = 175 \text{ GeV}$

			ZZ	0
	Gravity	Weak (Electro	Electromagnetic weak)	Strong
Carried By	Graviton (not yet observed)	w * w * z °	Photon	Gluon
Acts on	AII	Quarks and Leptons	Quarks and Charged Leptons and W W	Quarks and Gluons

• forces differ by

- exchange particles
- charge content
- range
- strength

2.2 Fundamental Force Properties

- Gravity (graviton exchange)
 - static force law (Newton): $F_G(r) = -G_N \frac{m_1 m_2}{r^2}$
 - extremely small coupling
 but only one charge ⇒ long range!

- static force law (Coulomb): $F_G(r) = G_C \frac{q_1 q_2}{r^2} \sim \frac{\alpha_{em}}{r^2}$
- small coupling, 1 anti-/charge ⇒ medium range
- Weak Force (W-,Z-boson exchange)
 - static force law (Fermi,GSW): $F_w(r) \sim \frac{\alpha_w}{r^2} \exp[-m_W r]$
 - small coupling, 2 anti-/charges
 - massive carriers ⇒ extremely short range
- Strong Force (gluon exchange)
 - static force law (QCD): $F_s(r) \sim -\alpha_s / r^2 \sigma$
 - large coupl., 3 anti-/charges, short range, confinement!

2.3 Proton Structure

Parton Momentum Fraction x

• Spin Structure of the Proton

- SPIN intrinsic

 ORBITAL z' axis
- quark- and gluon-spin contribution small
- quark orbital angular momentum?!

2.4 The Role of Particles + Forces in the Evolution + Structure of the Universe

- Gravity (long range)
 - large scale structure (galaxies, galaxy clusters)
 - star formation and collapse, black holes
- Electromagnetism (medium range)
 - neutralization of electrons/nuclei 400,000y after Big Bang
 - cosmic microwave background T_{Universe}=2.73°K
 - γ -ray bursters (the largest fire crackers in the Universe)
- Weak Force (very short range)
 - generation of bare masses 10⁻¹¹s after Big Bang
 - star cooling (neutrinos), element transmutation $(\mathbf{p} \leftrightarrow \mathbf{n})$
- Strong Force (short range)
 - generation of visible mass 10-6s after Big Bang
 - star burning and explosion, neutron-star structure

Nuclear Physics and the Universe

- Quark-Gluon Plasma: T>200MeV (<0.000001 sec.)</p>
- Phase transition to Hadronic Matter (Mass Generation, Quark Confinement), T≈170MeV (0.00001 sec.)
- Low-mass nuclei: H (p), d (pn), ³He, ⁴He, ⁷Li (3 min.)
- Heavy elements in star collapses: supernovae (still today)
- Exotic forms of (quark) matter in neutron stars (still today)

3.) Gravitational Force and Dark Matter

- Evidence for Dark Matter
- Supersymmetry?! (Neutralino!)

3.1 Dark Matter Evidence and Properties

Cosmic collision of 2 galaxy clusters: DM unaffected!

time ———

Dark Matter Properties: - very weakly interacting, charge-neutral- slowly moving ("cold"), stable+heavy particle

⇒ no such particle in the Standard Model, new idea needed!

Supersymmetry:

- fermion ↔ boson partners for all standard-model particles
- Supersymmetry "broken": $m_{stand} \ll m_{super} \sim 1 \text{TeV/c}^2$

3.2 How to Measure Dark Matter in the Lab?

• proton-proton collisions at the highest energy (14TeV):

Large Hadron Collider (LHC) at CERN:

7

3.2 How to Measure Dark Matter in the Lab?

• proton-proton collisions at the highest energy (14TeV):

Large Hadron Collider (LHC) at CERN:

7

4.) Precision β-Decay: Testing the Weak Force

Recall: around ~1700 Sir Isaac Newton realized the universality of gravity

Is the Weak Force universal, too?

Use precision measurements of nuclear beta-decay to check

We know now that ...

- 1. The weak force (vector component) is constant in nuclei to 0.026%.
- 2. We can also test full universality of the weak force -including the decay of other particles like the kaon -but the jury is still out on this one!
- 3. Nuclear physics is the source of key data for these tests, the most precise ones available.

5.) Nucleo-Synthesis, Stars + the Universe

- Nuclear Burning
- Supernovae
 - White-Dwarf Explosions (type-Ia)
 - Heavy-Star Explosions (type-II)
- Fate of the Universe
- Neutron Stars

5.1 Nuclear Burning

• Principle: large energy gain if light nuclei "fuse": A + B → C + binding energy

 $\mathbf{E}_{\mathrm{B}} = [\ (\mathbf{M}_{\mathrm{A}} + \mathbf{M}_{\mathrm{B}}) - \mathbf{M}_{\mathrm{C}}\]\ \mathbf{c}^{2}$

• "problem": Coulomb repulsion between **A** and **B**

- A and B need to "touch" to feel strong force and bind
- large temperature and density required for nuclear fusion (burning)!

- Big Bang: rapid expansion, only up to mass A=7 (Li), gaps at A=5,8!
- much later: gravity-driven star formation
- Sun (M~M $_{\text{$\mbox{}}}}}}}}}}}}}}}}}}}}}}}}}}}} preb$
- heavy stars: 3^4 He $\rightarrow {}^{12}$ C $+ {}^{4}$ He $\rightarrow {}^{16}$ O $+ {}^{16}$ O $\rightarrow {}^{4}$ He $+ {}^{28}$ Si $+ {}^{28}$ Si $\rightarrow {}^{56}$ Co $\rightarrow {}^{56}$ Fe
- star collapse and explosion: all elements beyond **A=56** (no energy gain)

5.2 Star Evolution Chart

5.3 SN-Ia Candles + Expansion of the Universe

- accurate light output I_0 , intensity $I(r) = I_0/4\pi r^2 \Rightarrow$ precise distance r(I)
- Doppler (red-) shift of spectral lines \Rightarrow recession velocity, \mathbf{v}_r , of source

5.4 Type II Supernovae

- High-mass star $(M_{star} > 8M_{\odot})$,
- burns fast (~50 My), up to ⁵⁶Fe
 - **⇒** core collapse
 - **⇒** type-II supernova explosion
- produces all known heavy elements
- leaves behind moving+rotating NS/BH

- $M_{NS} \approx 1.4 M_{\odot}$, but R=15km
- up to 5-10 times density of nuclei!!
- study cold nuclear equation of state (quark plasma, color-superconductor ...)
- rotation: lighthouse (mag. field), glitches
- γ-ray emission (bursters?)
- general relativity (grav. waves?)

5.4 Type II Supernovae

- High-mass star ($M_{\text{star}} > 8M_{\odot}$),
- burns fast (~50 My), up to ⁵⁶Fe
 - **⇒** core collapse
 - \Rightarrow type-II supernova explosion
- produces all known heavy elements
- leaves behind moving+rotating NS/BH

• $M_{NS} \approx 1.4 M_{\odot}$, but R=15km

• up to 5-10 times density of nuclei!!

• study cold nuclear equation of state (quark plasma, color-superconductor ...)

• rotation: lighthouse (mag. field), glitches

γ-ray emission (bursters?)

general relativity (grav. waves?)

6.) Some Perspectives for You

If you

- Enjoy / are excited by Physics / Science
- Tend to be curious
- Like to try things out AND/OR like math, computers

then we recommend to:

- Watch out for future SMP Series at A&M (2+ more)
- Consider enrolling in the Physics Undergraduate Program at A&M
- Inform yourself about future career paths in Physics

6.2 Thanks to:

- You! (students)
- Our high school teachers!
- Our lecturers: Profs. John Hardy, Teruki Kamon, Kevin Krisciunas, Hendrik van Hees, Rainer Fries, Dr. Adriana Banu
- The staff support team: Kendra Beasley, Shana Hutchins, Bruce Hyman, Leslie Spikes, Sharon Jeske, Tony Ramirez, Jerry Deason
- The SMP organizing team: Hendrik van Hees, Xingbo Zhao,
 Trent Strong, Saskia Mioduszewski, Rainer Fries + Adriana Banu
- Financial Support: U.S. National Science Foundation,
 Texas A&M Cyclotron Institute + Physics Department

2.1 Hot+Dense QCD Matter in Nature

In the laboratory: high-energy collisions of heavy nuclei! Objective: to create matter at temperatures $T > T_c \approx 170 MeV$ and energy densities $\varepsilon > \varepsilon_c \approx 1 GeV fm^{-3}$

3.1 Evidence for Dark Matter I

• motion of stars within galaxies: there must be more matter than we "see" (emits light)

⇒ Dark Matter:

- "background"?
- new particles?

5.3 Novae and Type-Ia Supernovae

- White dwarf accretes matter from red-giant companion (binary system)
 - (i) helium burning ignited on surface ⇒ **Nova** explosion
 - (ii) mass accretion up to 1.4 M_⋄
 - **⇒ Type-Ia Supernova** explosion, extremely regular light output:

a Diagram of the nova process.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.