The Secret of Mass: Can we Evaporate the Vacuum at RHIC?

Hendrik van Hees

Texas A&M University

February 24, 2007

Outline

The Beauty of Nature: Symmetries

Elementary Particles

The Fundamental Interactions

Heavy-Ion Collisions and the Quark-Gluon Plasma

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

The Beauty of Nature: Symmetries

- What is a symmetry?
- ► Geometry: Certain operations like rotations or translations, do not change a figure ⇒ then we say "it's symmetric"!

Symmetry of Natural Laws and Conservation Laws

- Mathematician Emmy Noether found an important relation between symmetries and conservation laws
 - ► Equation, describing the behavior of an object in time, does not change under an operation (symmetry) ⇔ a certain quantity stays constant in time (conserved quantity)

Symmetry of Natural Laws and Conservation Laws

- Mathematician Emmy Noether found an important relation between symmetries and conservation laws
 - ► Equation, describing the behavior of an object in time, does not change under an operation (symmetry) ⇔ a certain quantity stays constant in time (conserved quantity)

► it works also the other way: conserved quantity ⇒ equations obey a symmetry

Symmetry of Natural Laws and Conservation Laws

- Mathematician Emmy Noether found an important relation between symmetries and conservation laws
 - ► Equation, describing the behavior of an object in time, does not change under an operation (symmetry) ⇔ a certain quantity stays constant in time (conserved quantity)

► it works also the other way: conserved quantity ⇒ equations obey a symmetry

► example 1: Natural Laws do not change with time (equations look the same at any time) ⇒ Conservation of Energy

Symmetry of Natural Laws and Conservation Laws

- Mathematician Emmy Noether found an important relation between symmetries and conservation laws
 - ► Equation, describing the behavior of an object in time, does not change under an operation (symmetry) ⇔ a certain quantity stays constant in time (conserved quantity)

it works also the other way:
 conserved quantity ⇒ equations obey a symmetry

- ► example 1: Natural Laws do not change with time (equations look the same at any time) ⇒ Conservation of Energy
- ► example 2: Natural Laws do not change with position (equations of motion look the same at any place) ⇒ Conservation of momentum

Spontaneous Symmetry Breaking

Emmy Noether

- Equations are symmetric, but not the state of lowest energy
- Conservation law still true, but symmetry not realized

Spontaneous Symmetry Breaking

Emmy Noether

- Equations are symmetric, but not the state of lowest energy
- Conservation law still true, but symmetry not realized
- example: rotating a piece of iron, no change of laws for atoms
- ▶ it can be a magnet ⇒ specifies a direction

Spontaneous Symmetry Breaking

Emmy Noether

- Equations are symmetric, but not the state of lowest energy
- Conservation law still true, but symmetry not realized
- example: rotating a piece of iron, no change of laws for atoms
- ▶ it can be a magnet ⇒ specifies a direction
- Heating the magnet, at a certain "critical temperature" iron becomes suddenly unmagnetic
- Phase transition \Rightarrow Symmetry restored

Ferromagnets

 Magnetizing Ferromagnet: Applying a magnetic field External Magnetic Field

- Little "elementary magnets" inside the magnet stay lined up even after switching off the magnetic field
- Ferromagnet itself becomes a magnet
- ► specifies direction in space ⇒ spontaneous breaking of rotational symmetry

Ferromagnets

heating up the ferro magnet rattles up the elementary magnets

- at a certain critical temperature: Alignment of elementary magnets lost (phase transition!)
- Iron rod is no longer a magnet!
- no direction specified anymore
- rotational symmetry restored

Elementary particles

- Since ancient times scientists have asked: Are there indivisable smallest lumps of matter?
- Democritus (460-370 BC): "There is nothing but atoms and empty space (the void)."
- atom=Greek for indivisible
- Rutherford (1909-1911): most of the atom is "empty space"
- mass concentrated in the atomic nucleus

Subatomic particles

electron: charge -1/3, mass $m_d = 0$ MeV/ c^2

Subatomic particles

▶ BUT: nucleon mass $m_p = m_n = 940 \text{ MeV}/c^2$

Elementary Particles and Fundamental Interactions

- What holds the particles together (forming matter)?
- Fundamental forces or interactions (see Professor Fries's talk!)
- Laws ruled by symmetries!
- ▶ e.g. electric charge conserved ⇔ "Force Carrier" (wave fields ↔ particles) for electromagnetic interaction Photon

Hendrik van Hees

The Secret of Mass

Matter particles vs. Force Carriers

- Elementary Matter Parcitles: Quarks and Leptons spin s = 1/2
- Elementary Force particles gluons, photons (γ), W, Z
 Spin s = 1

Matter particles vs. Force Carriers

 Elementary Matter Parcitles: Quarks and Leptons spin s = 1/2

- Elementary Force particles gluons, photons (γ), W, Z
 Spin s = 1
- Fermions: only one identical fermion per room!
 Space-time symmetries: particles with half-integer spin
- Bosons: identical bosons prefer to stay together!
 Space-time symmetries:

particles with integer spin

The Eightfold Way

- in the 1950-1960'ies a whole zoo of particles has been discovered using accelerators (see Prof. Cagliardi's Talk!)
- most of them: hadrons: particles participating in strong interaction
- ▶ Gell-Mann, Zweig, Ne'eman (1961): all the hadrons can be understood by assuming that they are composed of spin-1/2 particles with electric charges -1/3 and 2/3
- Gell-Mann: How to name them? Quarks!
- Symmetry principles brought order in the chaos:
- three quarks (up, down, strange)
- Murray Gell-Mann
 Nobel Prize in Physics (1969)

The Eightfold Way

- symmetry two quantum numbers: Isospin and Strangeness
- Isospin and Strangeness conserved in strong interactions

The Eightfold Way

• Mesons: "add" a quark and an anti-quark (ex: $|\pi^-\rangle = |d\bar{u}\rangle$)

The Eightfold Way

- ▶ Mesons: "add" a quark and an anti-quark (ex: $|\pi^-\rangle = |d\bar{u}\rangle$)
- **•** Baryons: "add" three quarks (ex: $|p\rangle = |uud\rangle$)

Color

- Trouble: get only all observed hadrons if one puts three quarks in the same state!
- ▶ BUT: quarks must have spin 1/2
- they must be fermions (who don't like to be in the same room of the fermion motel!)
- but the model works: predicted $|\Omega^-\rangle = |sss\rangle$ was found

Color

- Trouble: get only all observed hadrons if one puts three quarks in the same state!
- ▶ BUT: quarks must have spin 1/2
- they must be fermions (who don't like to be in the same room of the fermion motel!)
- but the model works: predicted $|\Omega^-\rangle = |sss\rangle$ was found
- Solution: Each quark comes in three "colors"
- ► All quarks of the same kind are the same except they can differ in the color quantum number ⇒ Symmetry!

Quantum Chromo Dynamics

- More trouble: Nobody has seen free quarks yet!
- I want free quarks!
- \Rightarrow break up a meson

cannot break the meson, but I produce more hadrons!

- quarks confined in hadrons
- 1973: Gross and Wilczek, Politzer
- build theory based on color symmetry!
- force becomes stronger for longer distances
- reason: force carriers themselves have color

Quantum Chromo Dynamics

- from color symmetry of quarks (color charge conserved)
- ► force carriers: gluons (spin 1)
- ▶ matter particles: quarks (spin 1/2)
- theory called Quantum Chromo Dynamics (QCD) (Greek: chromos=color)
- force becomes weaker at small distances/high energy

Nobel prize in physics 2004:

Gross, Wilczek, Politzer

The Secret of Mass

Reminder: Mass problem

- atomic nucleus is composed of nucleons=protons and neutrons
- nucleons are composed of up and down quarks

- ▶ up quark: charge +2/3, mass $m_u = 3 \text{ MeV}/c^2$ down quark: charge -1/3, mass $m_d = 6 \text{ MeV}/c^2$ electron: charge -1, mass $m_e = 0.5 \text{ MeV}/c^2$
- ▶ BUT: nucleon mass $m_p = m_n = 940 \text{ MeV}/c^2$

Constituent Quarks

- Quarks inside hadron
- cloud of gluons around
- effectively: extended object
- constituent quark
- $\blacktriangleright M_{\rm con} = 350 \; {\rm MeV}/c^2$

•
$$m_d = 6 \text{ MeV}/c$$
,
 $m_u = 3 \text{ MeV}/c$

Where does the Constituent-Quark Mass come from?

Mass generation

- Strong force at low energies very strong \Rightarrow forms $q\bar{q}$ pairs
- ▶ pairs are bosons! ⇒ all like to stay in vacuum state (at lowest possible energy)
- about 5 pairs per fm⁻³ (1 fm=10⁻¹⁵ m!)

- Quarks become massive, because of very dense vacuum!
- How can we check this?
- Can we evaporate the vacuum?

How to evaporate the vacuum?

- Iots of quarks and gluons close together
- ► dense and hot environment ⇒ strong force becomes weaker!
- QCD at high temperatures and densities
- $\bar{q}q$ condensate disolves (phase transition!)

Use our favorite tool: Heavy-Ion Colliders!

- RHIC: Accelerate gold nuclei to 200 GeV per nucleon
- collide them head-on!
- Hope to create the Quark-Gluon Plasma!

The "Little Bang" in the Lab

What are probes from hot and dense stage?

The "Little Bang" in the Lab

- What are probes from hot and dense stage?
- Answer: decays of $\rho(770)$ meson to electrons and positrons!

The "Little Bang" in the Lab

- Challenge: Find the rare events!
- See Prof. Mioduszewski's talk from last week!

The ρ meson in the vacuum

- mass of the ρ mesons: $m_{\rho} = 770 \text{ MeV}/c^2$
- $m_{
 ho} pprox 2M_{
 m constituent quarks}$
- \blacktriangleright its lifetime is about $1.3~{\rm fm}/c = 3.3\cdot 10^{-24}{\rm sec}$
- It decays inside the hot and dense matter!

The ρ meson in the fireball

- how to measure the ρ mass inside the fireball?
 - could look at the decay pions
 - energy-momentum conservation $\Leftrightarrow \rho$ mass ($E = mc^2$!)
 - ▶ but pions interact strongly with the "junk" around them ⇒ Signal gets destroyed!

The ρ meson in the fireball

• how to measure the ρ mass inside the fireball?

- could look at the decay pions
- energy-momentum conservation $\Leftrightarrow \rho$ mass $(E = mc^2!)$
- ▶ but pions interact strongly with the "junk" around them ⇒ Signal gets destroyed!

▶ solution: rarely the ρ 's decay into an e^+e^- or $\mu^+\mu^-$ pair

- e^{\pm} and μ^{\pm} are leptons
- they do not interact strongly
- signal undistorted
- get the mass of the ρ inside the fireball

What do the Theoreticians predict?

- **>** some theoreticians predicted "dropping ρ mass"
- quark condensate melts, not much else happens to the ρ
- others simulated interactions of the ρ in the hot gas
- ρ becomes a broad mass distribution ("melting ρ ")

Hendrik van Hees The Secret of Mass

What is right?

- Only experiment can answer!
- most recent data from NA60 Experiment at CERN
- look for $\mu^+\mu^-$ pairs ("dileptons")

What is right?

- Only experiment can answer!
- most recent data from NA60 Experiment at CERN
- ▶ look for $\mu^+\mu^-$ pairs ("dileptons")

Curves from recent calculation [Ralf Rapp, HvH 2006] "Melting ρ " favored compared to dropping ρ mass

What is right?

- Only experiment can answer!
- most recent data from NA60 Experiment at CERN
- look for $\mu^+\mu^-$ pairs ("dileptons")

Curves from recent calculation [Ralf Rapp, HvH 2006] "Melting ρ " favored compared to dropping ρ mass

- need more detailed theoretical studies
- going on also at Texas A&M!
- We begin to understand the origin of mass!

Summary

- ► Natural Laws ↔ Symmetries ↔ Conservation Laws
- Atom \rightarrow Nucleus \rightarrow Nucleons \rightarrow quarks (elementary!)
- Quarks always confined to Hadrons (baryons and mesons)
 - strong force described by QCD (based on color symmetry!)
 - Confinement only partially understood from QCD

Summary

- ► Natural Laws ↔ Symmetries ↔ Conservation Laws
- Atom \rightarrow Nucleus \rightarrow Nucleons \rightarrow quarks (elementary!)
- Quarks always confined to Hadrons (baryons and mesons)
 - strong force described by QCD (based on color symmetry!)
 - Confinement only partially understood from QCD
- Quarks acquire a large mass within hadrons
 - ▶ vacuum is a "dense liquid" of $\bar{q}q$ and gluon condensates
 - spontaneous symmetry breaking
 - more than 98% of the visible mass in the universe

Summary

- ► Natural Laws ↔ Symmetries ↔ Conservation Laws
- Atom \rightarrow Nucleus \rightarrow Nucleons \rightarrow quarks (elementary!)
- Quarks always confined to Hadrons (baryons and mesons)
 - strong force described by QCD (based on color symmetry!)
 - Confinement only partially understood from QCD
- Quarks acquire a large mass within hadrons
 - vacuum is a "dense liquid" of $\bar{q}q$ and gluon condensates
 - spontaneous symmetry breaking
 - more than 98% of the visible mass in the universe
- Collisions of Heavy Nuclei at High Energies
 - Heat the vacuum and evaporate the condensates
 - deconfine quarks and gluons
 - dissolve mass into energy
 - dileptons (e^+e^- or $\mu^+\mu^-$) from decays of ρ mesons
 - study the origin of mass

Summary

- ► Natural Laws ↔ Symmetries ↔ Conservation Laws
- Atom \rightarrow Nucleus \rightarrow Nucleons \rightarrow quarks (elementary!)
- Quarks always confined to Hadrons (baryons and mesons)
 - strong force described by QCD (based on color symmetry!)
 - Confinement only partially understood from QCD
- Quarks acquire a large mass within hadrons
 - ▶ vacuum is a "dense liquid" of $\bar{q}q$ and gluon condensates
 - spontaneous symmetry breaking
 - more than 98% of the visible mass in the universe
- Collisions of Heavy Nuclei at High Energies
 - Heat the vacuum and evaporate the condensates
 - deconfine quarks and gluons
 - dissolve mass into energy
 - dileptons (e^+e^- or $\mu^+\mu^-$) from decays of ρ mesons
 - study the origin of mass

Very exciting physics ahead!