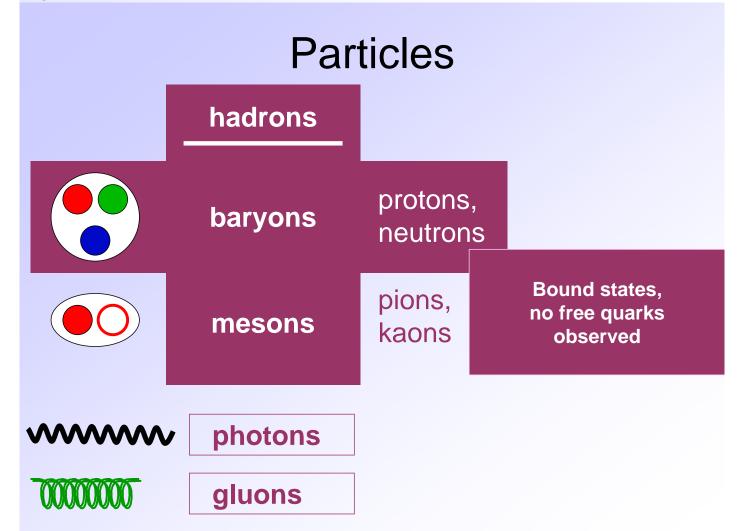

SICS

A Closer Look at the Nucleus

Proton

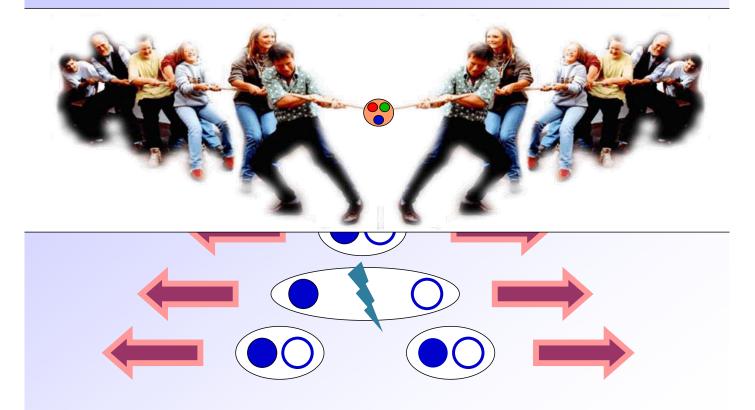
Atom: positive nucleus and negatively charged electron cloud

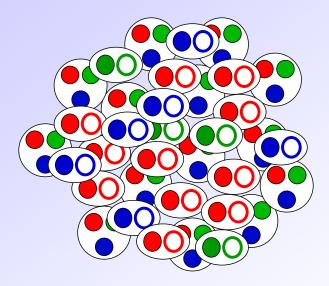

Ion = Atom stripped of electrons

Nucleus: nucleons = protons and neutrons

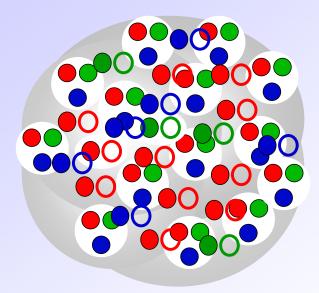
Nucleon: partons = quarks and gluons

- arises from fundamental strong force
 - acts on color charge of quarks

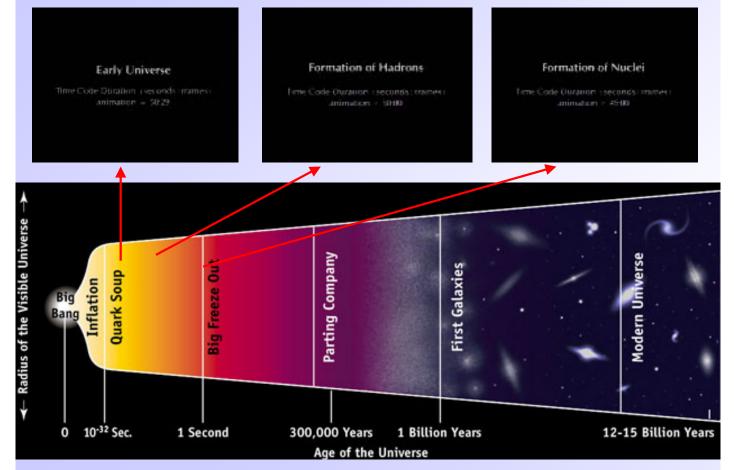

Interactions described by theory of Quantum-Chromo-Dynamics (QCD)


Confinement – Quarks are not "free"

The Strong Nuclear Force



Deconfinement


Au+Au = 197 + 197 nucleons Collide at High Energy \rightarrow Add pions

Deconfinement

Quark Gluon Plasma

The Early Universe

Try to create QGP in Lab

- Take heavy ions
 - Au (at RHIC)
 - big atoms, many protons, gluons and quarks
- Accelerate ions to increase their energy

Rb

55 56 57 72 73 74 75 76 77

-87

 \mathbf{Fr}

Cs Ba

 \mathbf{Sr}

- 88

• Smash them toge r (let them collins of r)

Al Si Р Cl \mathbf{Ar} Hope to create Q K¹⁹ Ca sc Ti V 24 25 31 -32 26 28 29 30 33 34 35 36 Cr Mn Fe Co Cu Zn Ni Ga Ge Br \mathbf{Kr} As Se - 39 40 41 - 42 43 44 45 46 47 48 -54 49 - 50 -51 -52 -53

Y

Zr Nb Mo Tc Ru Rh Pd

La Hf Ta W Re Os Ir

Ra Ac Unq Unp Unh Uns Uno Une Un

89 104 105 106 107 108 109 抗

- 58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce			Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm		
90	91	92	93	- 94	95	96	- 97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	\mathbf{Cm}	$\mathbf{B}\mathbf{k}$	$\mathbf{C}\mathbf{f}$	Es	Fm	101 Md	No	\mathbf{Lr}

1⁸ I t

Ag Cd

79

Au Hg

In

81 82

Sn Sb

Tl Pb Bi Po

83 84 85 86

He 10

Ne

18

I Xe

At | Rn

Te

RHIC Physics Program -Why collide Heavy Ions?

- RHIC was proposed in 1983
- One of the main emphases is study of properties of matter under extreme conditions
 - large energy densities
 - high temperatures
- To achieve these conditions we collide heavy nuclei at very high energies

Why?

- To help us understand the basic building blocks of matter and their interactions
- To help us understand the early composition of our universe and its formation

Relativistic Heavy Ion Collider

Relativistic → Einstein's relativity E=mc², near light speed

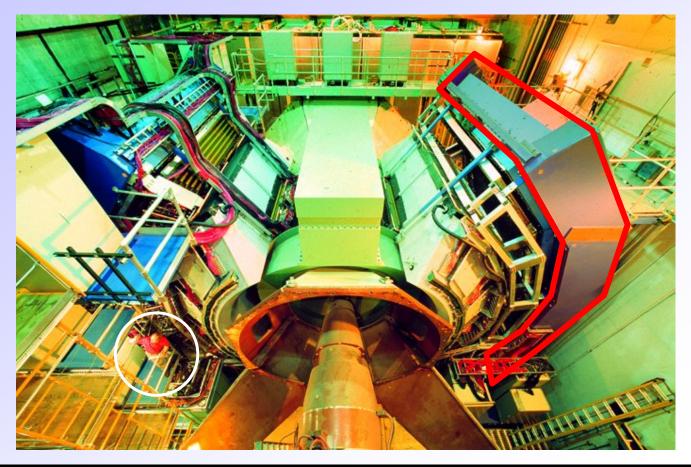
Heavy Ion → Elements like gold, without electrons

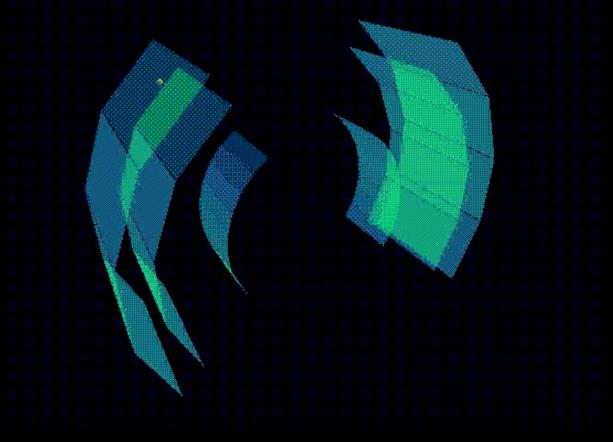
Collider → Two ion beams hit head-on

as seen by the Landsat-4 satellite...

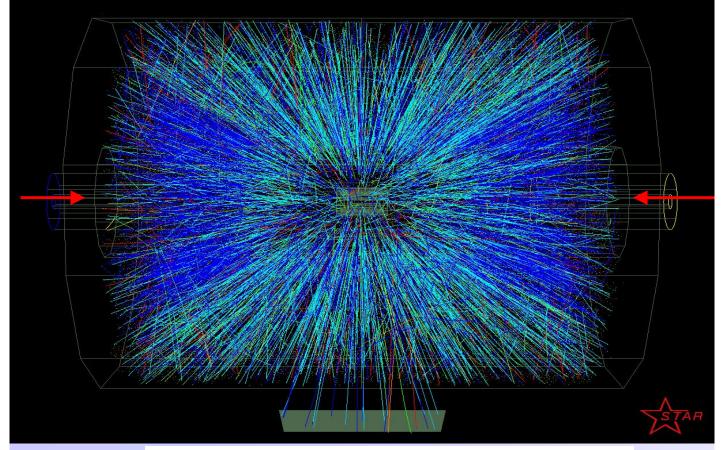
RHIC from Space

Inside the RHIC Ring


- Underground tunnel
- Super-conducting magnets cooled by liquid helium (@ 4.5 K)
- 1740 Magnets
- 2.4 Mile circumference

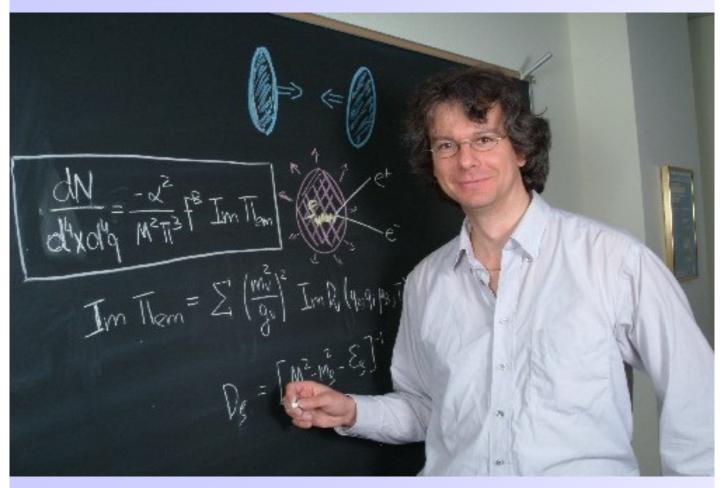


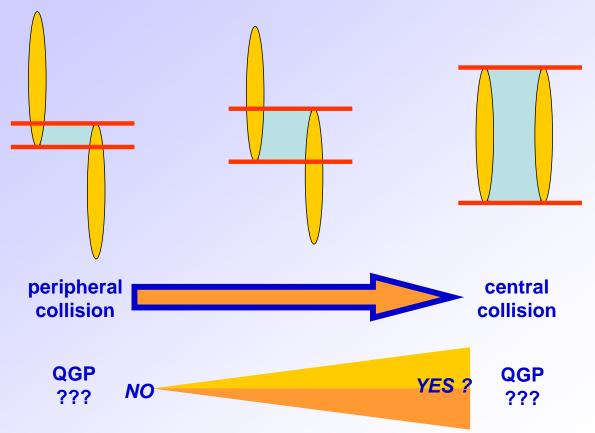
Each collaboration about 400 physicists and engineers

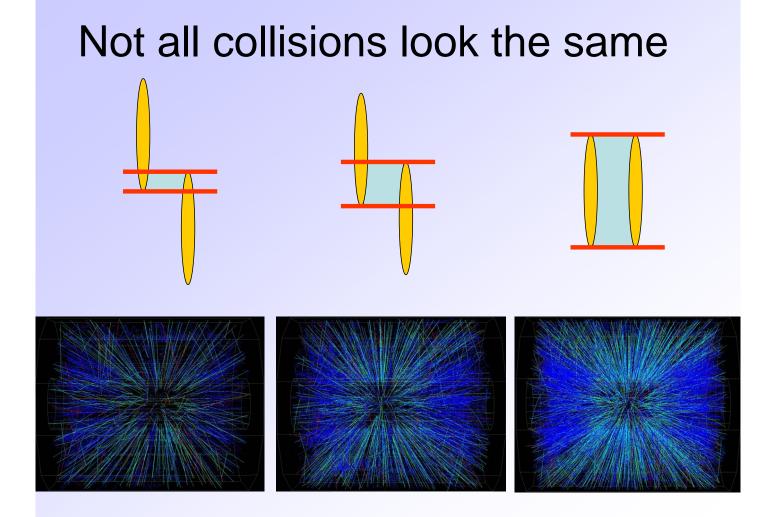


200 GeV Au+Au Collisions in the PHENIX detector

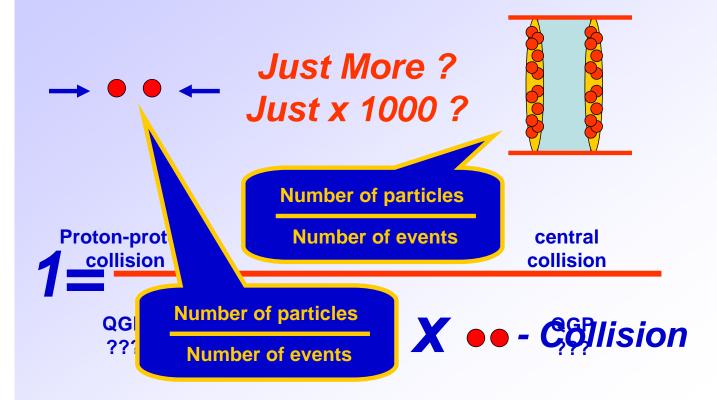
Animation by Jeffery Mitchell


Example of Au+Au collisions in collider (STAR event display)


Experimentalist at work



.... as opposed to a theorist working



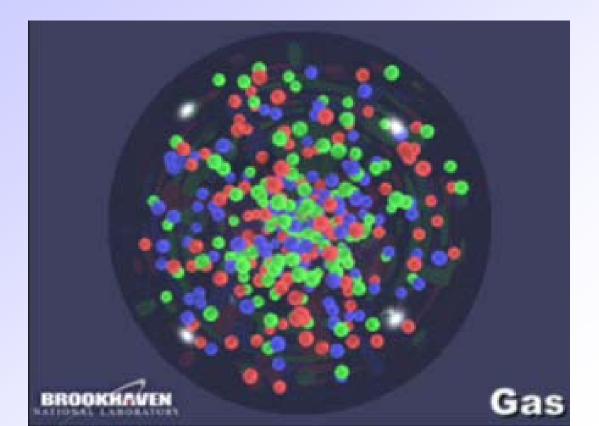
Not all collisions look the same

Not all collisions look the same

The New York Times

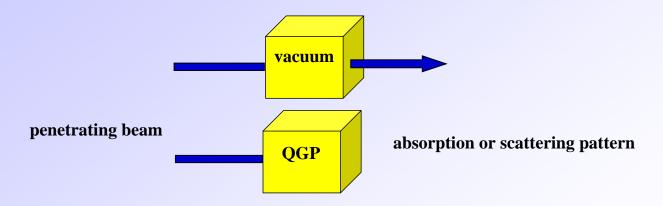
At One Trillion Degrees, Even Gold Turns Into the Sloshiest Liquid **The New York Times**

Source: New York Times Published: 4/19/2005 Written by: Chang, Kenneth


Scientists Report Hottest, Densest Matter Ever Observed

It is about a trillion degrees hot and flows like water. Actually, it flows much better than water.

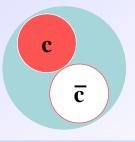
Scientists at the Brookhaven National Laboratory on Long Island announced yesterday that experiments at its Relativistic Heavy Ion Collider - RHIC, for short, and pronounced "rick" - had produced a state of matter that is unexpectedly sloshy.


"Every substance known to mankind before would evaporate and become a gas at two million, three million degrees," said Dr. Dmitri Kharzeev, a theoretical physicist at Brookhaven. "So the big surprise here is the matter created at RHIC is a liquid."

Gas vs. Liquid

How to Probe the Matter that is Produced?

Ideal Experiment:

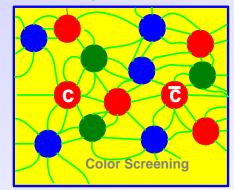

But QGP only exists ~ 10⁻²³ seconds How can we probe a state that exists for such a short time?

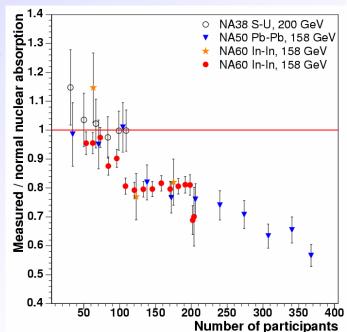
Charm Quarks in QGP

	B	DSONS	force carrie spin = 0, 1			6 fermi	ons and f	S leptons	3		
Unified Ele	ectroweak	spin = 1	Strong	(color) spir		6 fermions and 6 leptons come in 3 identical					
Name	Name Mass Electric GeV/c ² charge			Name Mass Ele GeV/c ² ch			generations (only masses are different)				
Ŷ	0	0	g	0		· · · · · · · · · · · · · · · · · · ·	ey have a				
W	MIONS matter constituents spin = 1/2, 3/2, 5/2,										
W ⁺ W boson	Talas maintaine	and the Part	pin =			1/2 Quarks spin =1/2					
Z ⁰ Z boson	Line -	D		144400 144400	is ′c²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
			a had or	-	×10 ⁻⁹	0	U up	0.002	2/3		
Lep	- Carlos			: 111.	511	_1	d down	0.005	-1/3		
the	N. ANG		的物物和	Tr. Kang	3)×10 ⁻⁹	9 0	C charm	1.3	2/3		
qua		puring all sall	Caner A	We deal & W.)6	-1	S strange	0.1	-1/3		
cha strong	torce.				0.14)×10 ^{−9}	0	top	173	2/3		
			τ tau	1	1.777	-1	bottom	4.2	-1/3		

Nobel Prize - 1976

- Discovery of the J/psi Particle ("charmonium")
- The 1976 Nobel Prize in physics was shared by a Massachusetts Institute of Technology researcher, Samuel C.C. Ting (right), who used Brookhaven's Alternating Gradient Synchrotron (AGS) to discover a new particle and confirm the existence of the charmed quark.

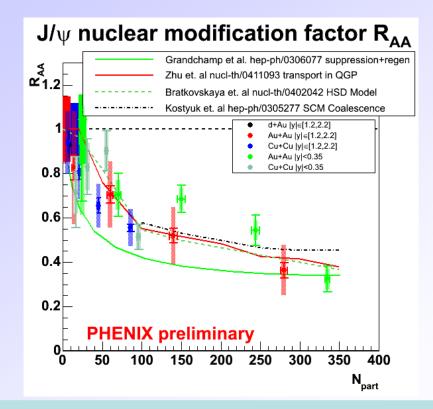




What do we expect from J/Y in QGP?

In a hot QCD medium, when the temperature is raised well beyond the deconfinement temperature, the J/ψ and its excitations are expected to melt.

→ We expect a suppression of bound states due to color screening in the Quark Gluon Plasma. (Matsui and Satz, 1986)



Data from SPS

Deconfinement via J/Y Suppression at RHIC

- Lattice calculations predict J/ Ψ survives in plasma up to ~2 T_c
- Suppression at RHIC should be larger than SPS because of larger energy density
- Charm cross-section larger at RHIC than SPS – ~ 20 cc pairs produced per collision
- We have evidence that charm may be partially thermalized at RHIC → Could we have recombination of cc pairs to regenerate J/Ψ ?

J/Ψ – Data Comparison to Theory

Models implementing suppression and regeneration: reasonable agreement with the data

Summary

- Goal at RHIC is to create Quark-Gluon Plasma (deconfinement of quarks)
- RHIC has collided Au+Au, p+p, and d+Au
- There are 4 RHIC experiments (2 large, 2 small)
- Results imply that we have created a very dense medium in Au+Au collisions
- Wealth of data only one physics topic shown today
 J/Ψ data consistent with melting and regenerating in plasma