Modern Particle Accelerators and Detectors:

A Household Survey

Carl A. Gagliardi Texas A&M University

Carl Gagliardi Sat Morn Physics

1

Alyson Clarke

- High school All Star swimmer
- My niece

To do well in her sport, she really needs to know how to **ACCELERATE**

Deena Greer

- Physician
- My wife

To **ACCELERATE** healing, she needs to **DETECT** problems that are impossible to see

Carl Gagliardi Sat Morn Physics

3

How Do We Accelerate?

Let's ask Alyson

We drop things!

How Do We "Drop" Particles?

We can only build so many accelerators next to cliffs

Deena has a better idea! **VOLTS**

Carl Gagliardi Sat Morn Physics

5

The Van de Graaff Accelerator

- Start with positively charged particles at high voltage
- · Let them "fall" to ground potential
- They accelerate during the process

A Problem:

- -- Difficult to make q>2
- -- Difficult to make V larger than a few million volts
- → Difficult to make E large!

The Tandem Van de Graaff Accelerator

- Start with negative ions at ground
- Let them "fall" to positive high voltage
- Strip many electrons off the ion to produce a large positive charge
- · Let the positive charge "fall" back to ground
- The particles accelerate during both steps

Can achieve energies of 10's of millions of electron volts (MeV), or velocities up to 20% of the speed of light

Carl Gagliardi Sat Morn Physics

7

Can Investigate Many Nuclear Reactions

- Very useful to study reactions with a broad range of light to intermediate mass nuclei
- Alpha particles (the nuclei of helium atoms) can be accelerated to ~30 MeV, representing 7.5 MeV/nucleon or ~13% of the speed of light.
- Can penetrate to the nucleus of essentially any atom up to lead

Alpha particle Charge = +2 Lead nucleus Charge = +82

Maybe Even I Can Do This!

Well, maybe not

Carl Gagliardi Sat Morn Physics

9

Not Useful for Reactions with Heavy Nuclei

- Can accelerate gold nuclei to ~200 MeV, but this is only ~1 MeV/nucleon or 5% of the speed of light
- Not energetic enough to penetrate to the nucleus of a second heavy atom!

Gold nucleus Charge = +79

Lead nucleus Charge = +82

We need another trick!

Another Trick

To go high, pump many times!

Carl Gagliardi Sat Morn Physics

Swing Sets → Particle Accelerators

Uncle Carl, do I need to explain everything to you?

ALTERNATES

Carl Gagliardi Sat Morn Physics

34

The Cyclotron

- The first accelerator to use alternating voltages was the cyclotron
- Invented by Ernest Lawrence in the late 1920's
- Combines alternating voltages with magnetic fields

A Modern Example

The Texas A&M K500 Superconducting Cyclotron -- can accelerate alpha particles to 280 MeV and uranium over 2000 MeV (40% and 14% of the speed of light, respectively)

Carl Gagliardi Sat Morn Physics

36

Another Application: the Linear Accelerator

The 2-mile long Stanford Linear Accelerator speeds electrons up to 45-50 GeV (billions of electron volts) or ~99.99999995% of the speed of light.

A Multi-Accelerator Complex The Relativistic Heavy Ion Collider -- RHIC

Carl Gagliardi Sat Morn Physics

38

RHIC at Brookhaven National Laboratory

PROTON

LINAC

- Accelerates gold nuclei to 19,700 GeV or 99.996% of the speed of light
- Two separate beams collide with each other.
- Au+Au with each at 19,700
 GeV is equivalent to a
 single Au nucleus of
 4,200,000 GeV hitting a
 second Au nucleus at rest

Fig. 2. RHIC acceleration scenario for Au beams.

RHIC: the Relativistic Heavy Ion Collider

Carl Gagliardi
Sat Morn Physics
40

The Principle Behind All Particle Detectors

Some Historical Background – the First Tracking Detector

Carl Gagliardi Sat Morn Physics Clouds

The Cloud Chamber

Figure I.3 An early particle detector: Wilson's cloud characteristic Museum, London.)

Carl Gagliardi Sat Morn Physics

Another Important Historical Detector

Carl Gagliardi Sat Morn Physics **Bubbles**

The Bubble Chamber

Figure 2.15 Example of charmed-particle production and decay in the hydrogen bubble chamber BEBC exposed to a neutrino beam at the CERN SPS. (Courtesy CERN.)

Carl Gagliardi Sat Morn Physics

Maybe I Can Build a Detector, Too?

Carl Gagliardi Sat Morn Physics

Detector Misfire!!!

STAR: the Solenoidal Tracker At RHIC

Carl Gagliardi Sat Morn Physics

A Modern Workhorse Nuclear and Particle Physics Detector

Semiconductor diodes - "Ge" and "Si" detectors

Carl Gagliardi Sat Morn Physics

48

Ge and Si Detectors

Can be used to measure energies precisely, or positions precisely, or both.

A Single Ge Detector

The most precisely calibrated Ge detector in the world is at Texas A&M.

Carl Gagliardi Sat Morn Physics

50

The STAR Silicon Vertex Tracker

Used to measure charged-particle positions to a few thousandths of an inch.

Another Modern Workhorse Nuclear and Particle Physics Detector

Gaseous detectors

Carl Gagliardi Sat Morn Physics

52

One Example: the Time Projection Chamber

The time to reach the end of the TPC determines the distance drifted in the gas.

Provides **3-D information** about particle positions.

The STAR Time Projection Chamber

Yet a Third Modern Workhorse Nuclear and Particle Physics Detector

"Scintillation" and Cherenkov detectors. Emit a flash of Carl Gaglial Hight when an energetic charged particle passes through. Sat Morn Physics

Scintillator and Cherenkov Detectors

Can have very fast response (few x 10⁻⁹ sec). Therefore, often used for "triggering".

Carl Gagliardi Sat Morn Physics

56

Gammasphere – an Array of Ge and Scintillator Detectors

Combining the "best of both worlds".

The **STAR** Detector

STAR Event from a Au+Au Collision

Solar Neutrino Detectors

- Not all modern nuclear and particle physics detectors are based at accelerators.
- 2002 Nobel Prize in Physics was awarded for pioneering measurements of the neutrinos that are emitted from the sun.
- Neutrinos are really hard to detect!
- Very large detectors → use "common" materials

Carl Gagliardi Sat Morn Physics

60

Homestake Mine Solar Neutrino Experiment

- -- 100,000 gallons of dry cleaning solution, a mile underground
- -- Detect less than 10 (!!!) individual Ar atoms per month

Kamioka, Super-K, and SNO Experiments

Carl Gagliardi Sat Morn Physics Large water tanks, deep underground, used as Cherenkov detectors

Super-K Neutrino Detector

Carl Gagliardi Sat Morn Physics

A Neutrino Event in Super-K

Carl Gagliardi Sat Morn Physics

SNO: Sudbury Neutrino Observatory

Carl Gagliardi Sat Morn Physics

In spite of our modern technologies, there are some things we will never detect!

this time ?????

Carl Gagliardi Sat Morn Physics

But We Are Doing Pretty Well!

Carl Gagliardi Sat Morn Physics

