Next week office hours:

T 11-12
W 10-11
R 10-11 (unchanged)
Review Ch. 8

Force is conservative if
1) Work done by force in a closed path is 0.
2) \(\exists \) a function \(U(x,y) = \text{"potential energy"} \) such that the force can always be described as:
\[
F = -\frac{\partial U}{\partial x} \hat{i} - \frac{\partial U}{\partial y} \hat{j}
\]
\[
F_x = -\frac{\partial U}{\partial x} \quad \text{and} \quad F_y = -\frac{\partial U}{\partial y}
\]

If 1-dim
\[
F_x = -\frac{\partial U}{\partial x} \Rightarrow U(x) = \int F_x \, dx + C
\]
Examples of conservative forces in nature: Spring force + gravity

1) \(\vec{F}^s = -kx \ \hat{i} \) (horizontal spring)

In general, \(X_{eq} \neq \) constant

\[\vec{F}^s = -K(X - X_{eq}) \ \hat{i} \]

\(L \) = displacement from equilibrium position.

\[U(x) = -\int F^s \, dx = \frac{1}{2} kx^2 - kx_{eq} x + C \]

\[F = -kx \]

\[U = \frac{1}{2} kx^2 = \frac{1}{2} \left(kX^2 - (2kx_{eq}X + 2C) \right) = \frac{1}{2} k(X - A)^2 \]

2) \(\vec{F} = -mg \ \hat{j} \)

\[F_y = -\frac{dU}{dy} \]

\[U(y) = -\int F_y \, dy = -\int -mg \, dy = mg y + C \]
$W_{\text{total}} = K_f - K_i$ always true

If only conservative force doing work, then total mechanical energy $(K+U)$ is conserved.

$K_i + U_i = K_f + U_f$

$W_{\text{cons}} = \Delta U = -(U_f - U_i) = U_i - U_f$

$U_i - U_f = K_f - K_i$

$U_i + K_i = U_f + K_f$
Last year's Exam:

Problem 2:

\[\mathbf{F}_{sp} = (-kx - \alpha x^3) \hat{r} \]

a.) \(U = -\int F_{sp} \, dx \)

\[W_{x_i, x_f}^{F_{sp}} = \int_{x_i}^{x_f} (-kx - \alpha x^3) \, dx \]

\[= -\frac{kx^2}{2} - \frac{\alpha x^4}{4} \bigg|_{x_i}^{x_f} = -\frac{kx_f^2}{2} - \frac{\alpha x_f^4}{4} + \frac{kx_i^2}{2} + \frac{\alpha x_i^4}{4} \]

\[= -(U(x_i) - U(x_f)) \]

\[\Rightarrow U(x) = \frac{kx^2}{2} + \frac{\alpha x^4}{4} + C \]

\[F_x = -\frac{dU}{dx} = -kx - \alpha x^3 \]
b.) Find max. compression a.
- can use work-energy theorem
 \[W_{\text{total}} = K_f - K_i \]
 \(b/c \) you know \(\Delta K : K_i = \frac{1}{2} m v_0^2 \)
 \(K_f = 0 \), and \(W_{\text{total}} \) is a fun.
 \(\Rightarrow \) at max compression \(v_f = 0 \)!

\[\begin{align*}
 W_{\text{total}} &= K_f - K_i = 0 \\
 W_{\text{total}} &= W_{F_5} = -\frac{Kx^2}{2} - \frac{a^4}{4} \\
 -\frac{ka^2}{2} - \frac{a^4}{4} &= -\frac{1}{2} m v_0^2 \\
 \text{solve for } a.
\end{align*} \]
OR use conservation of mech. energy:

\[U_i + K_i = U_f + K_f \]

\[K = \frac{1}{2} mv^2 \quad \text{and} \quad U(x) = \frac{kx^2}{2} + \frac{ax^4}{4} \]

\[0 + \frac{1}{2} mv_0^2 = \frac{ka^2}{2} + \frac{a^4}{4} + 0 \]

\[\text{solve for } a \]

\[U_i = U(x=0) = 0 \]

\[U_f = U(x=a) = \frac{ka^2}{2} + \frac{a^4}{4} \]

\[K_i = \frac{1}{2} mv_0^2 \]

\[K_f = \frac{1}{2} m(0)^2 = 0 \]
Past Exam #3:

starts from rest

spring is compressed a distance A.

Force of a spring when $x_{eq} \neq 0$

$F^{sp} = -k(x-x_{eq}) = -k(x-A)$

a.) no friction. Determine maximum height h that it will reach.

At max. height $v=0$

Use $W_{\text{total}} = K_f - K_i$ b/c change in kinetic energy is known $\frac{1}{2}$

Work done will be a fcn. of height h.

$W_{\text{total}} = K_f - K_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = 0$
\[W_{\text{total}} = W_{\text{fg}} + W_{\text{fs}} + W_{\text{h}} = 0 \]

\[W_{\text{fg}} = \int_{0}^{x_f} -mg \sin \theta \, dx + \int_{0}^{h} -mg \cos \theta \, dx \]

\[\sin \theta = \frac{h}{x_f} \]

\[\Rightarrow x_f = \frac{h}{\sin \theta} \]

\[= -mg \sin \theta \times \int_{0}^{x_f} \frac{h}{\sin \theta} = -mg \frac{h^2}{\sin \theta} \]

Spring will only affect motion until it reach equil. then it stops (not attached to mass)

\[W_{\text{fs}} = \int_{0}^{A} -k(x-A) \, dx = \int_{0}^{A} (-kx + kA) \, dx \]

\[= -\frac{kx^2}{2} + kAx \bigg|_0^A = -\frac{kA^2}{2} + kA^2 \]

\[= \frac{kA^2}{2} \]
\[W_{total} = -mg h + \frac{1}{2} kA^2 = 0 \]
\[h = \frac{KA^2}{2mg} \]

b.) If it reaches height \(h' \) instead, and \textbf{there is} friction, determine the coefficient of friction \(\mu \).

\[F_f = \mu N \]
\[\Sigma F_y = N - F_{gy} = 0 \]
\[N = mg \cos \alpha = F_f = \mu mg \cos \alpha \]
\[W = \int_0^{h'/\sin \alpha} (-\mu mg \cos \alpha) dx \]
\[= -\mu mg \cos \alpha \cdot \frac{h'}{\sin \alpha} \]
\[= -\mu mg h' \cos \alpha \frac{1}{\sin \alpha} = -\mu mg h' \cot \theta \]

\[W_{total} = W_f + W_g + W_s + W_n = 0 \]
\[= -\mu mg h' \cot \theta - mg h' + \frac{1}{2} kA^2 = 0 \]

Solve for \(\mu \)
(\(h' \) given)
Last quiz:

\[F(x) = \frac{\alpha m}{x^2} = \alpha m x^{-2} \]

\[W\left|_a^b \right. = \int_a^b F(x) \, dx = \int_a^b \alpha m x^{-2} \, dx \]

\[= -\alpha m \left(\frac{1}{b} - \frac{1}{a} \right) \]

b.) given \(v(x=a) = v_0 \)

Find \(v(x=b) \)

\[W_{total} = K_f - K_i = \frac{1}{2} mv_b^2 - \frac{1}{2} mv_0^2 \]

Why can't you solve

\[F = ma \quad \Rightarrow \quad \int a \, dt \]

\[= \int \frac{\alpha m}{x^2} \, dt \]

\[= \int \left[x(t) \right]^2 \, dt \]

If you don't have \(a(t) \), then don't know how to integrate w.r.t. \(t \)!