PHYS 606 - Spring 2016 - Homework VII - Solution
Problem [1]
(a) $E>V_{0} \Rightarrow$ plane waves everywhere: General solution

$$
\dot{\psi}(x)=\left\{\begin{array}{lll}
A e^{i k x}+B e^{-i k x} & f \cdot x<-a & k=\frac{1}{\hbar} \sqrt{2 m E} \\
C e^{i k^{\prime} x}+D e^{-i k^{\prime} x} & f-a<x<a & k^{\prime}=\frac{1}{\hbar} \sqrt{2 m\left(E-v_{0}\right)} \\
E e^{i k x}+F e^{-i k x} & f \cdot x>a &
\end{array}\right.
$$

Matching: $e x=-a: \quad A e^{-i k a}+B e^{t i k a}=C e^{-i k^{\prime} a}+D e^{+i k^{\prime} a}$

$$
\left.\left.\begin{array}{rl}
& i k\left(A e^{-i k a}-B e^{+i k a}\right)=i k^{\prime}\left(C e^{-i k^{\prime} a}-D e^{+i k^{\prime} a}\right) \\
\Rightarrow & i k(1)+(2): A
\end{array}\right) \frac{1}{2 k} e^{i k a}\left[C\left(k+k^{\prime}\right) e^{-i k^{\prime} a}+D\left(k-k^{\prime}\right) e^{i k^{\prime} a}\right]\right)
$$

$$
\begin{align*}
e x=+a: & C e^{i k^{\prime} a}+D e^{-i k^{\prime} a}=E e^{i k a}+F e^{-i k a} \tag{3}\\
& i k^{\prime}\left(C e^{i k^{\prime} a}-D e^{-i k^{\prime} a}\right)=i k\left(E e^{i k a}-F e^{-i k a}\right) \tag{4}\\
\Rightarrow C & =\frac{1}{2 k^{\prime}} e^{-i k^{\prime} a}\left[E\left(k^{\prime}+k\right) e^{i k a}+F\left(k^{\prime}-k\right) e^{-i k a}\right] \tag{i}\\
D= & \frac{1}{2 k^{\prime}} e^{i k^{\prime} a}\left[E\left(k^{\prime}-k\right) e^{i k a}+F\left(k^{\prime}+k\right) e^{-i k a}\right] \tag{1}
\end{align*}
$$

Eliminate $C_{i} D$ from (${ }^{\prime}$) through (4^{\prime}):

$$
\begin{aligned}
A= & \frac{1}{4 k k^{\prime}} E\left[\left(k+k^{\prime}\right)^{2} e^{2 i\left(k-k^{\prime}\right) a}-\left(k-k^{\prime}\right)^{2} e^{2 i\left(k+k^{\prime}\right) a}\right] \\
& +\frac{1}{4 k k^{\prime}} \mp\left[\left(k^{\prime 2}-k^{2}\right) e^{-2 i k^{\prime} a}-\left(k^{\prime 2}-k^{2}\right) e^{2 i k^{\prime} a}\right] \\
= & E e^{2 i k a}\left[\frac{k^{2}+k^{\prime 2}}{4 k k^{\prime}} 2 i \sin \left(-2 k^{\prime} a\right)+\frac{2 k k^{\prime}}{4 k k^{\prime}} 2 \cos \left(-2 k^{\prime} a\right)\right] \\
& +F \frac{k^{\prime 2} k^{2}}{4 k k^{\prime}} 2 i \sin \left(-2 k^{\prime} a\right)
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{i}{4 k k^{\prime}} E\left[\left(k^{2}-k^{\prime 2}\right) e^{-2 i k^{\prime} a}-\left(k^{2}-k^{\prime 2}\right) e^{+2 i k^{\prime} a}\right]+\frac{1}{4 k k^{\prime}} F\left[\left(k-k^{\prime}\right)^{2} e^{-2 i\left(k+k^{\prime}\right) a}+\left(k+k^{\prime}\right)^{2} e^{2 i\left(k^{\prime}-k\right) a}\right] \\
& =E \frac{k^{2}-k^{\prime 2}}{4 k k^{\prime}} 2 i \sin \left(-2 k^{\prime} a\right)+F e^{-2 i k a}\left[\frac{k^{2}+k^{\prime 2}}{4 k k^{\prime}} 2 i \sin 2 k^{\prime} a+\frac{2 k k^{\prime}}{4 k k^{\prime}} 2 \cos 2 k^{\prime} a\right] \\
& \Rightarrow\binom{A}{B}=M\binom{E}{F} \quad \text { with } M \text {-malnix } \quad \text { with } \varepsilon^{\prime}=\frac{k^{\prime}}{k}+\frac{k}{k^{\prime}}=\frac{k^{2}+k^{\prime 2}}{k k^{\prime}} \\
& M=\left(\begin{array}{cc}
\left(\cos 2 k^{\prime} a-i \frac{\varepsilon^{\prime}}{2} \sin 2 k^{\prime} a\right) e^{2 i k a} & -\frac{i j}{2} \sin 2 k^{\prime} a \\
\frac{i \eta^{\prime}}{2} \sin 2 k^{\prime} a & \left(\cos 2 k^{\prime} a+i \frac{k^{\prime}}{2}-\frac{k}{k^{\prime}} \sin 2 k^{\prime} a\right) e^{-2 i k a}
\end{array}\right) \\
& T=\left|\frac{E}{A}\right|^{2}=\left|M_{11}\right|^{2}=\cos ^{2} 2 k_{a}^{\prime} a+\frac{\frac{C}{}_{\prime 2}^{T}}{t} \sin ^{2} 2 k_{a}^{\prime} a \quad ; \quad R=1-T \\
& T \rightarrow 1 \text { for } k^{\prime} \rightarrow k \text {, i.e. } E>V_{0}
\end{aligned}
$$

(6) Situdisen dorivesly exactey the saure as (a) just repluce

$$
K^{\prime}=\frac{1}{\pi} \sqrt{2 m\left(E+V_{0}\right)} .
$$

(a)

$$
\begin{aligned}
& W^{*}(\vec{r}, \vec{p}, t)=\left(\int \psi^{*}\left(\vec{r}-\frac{\vec{r}}{2}\right) \psi\left(\vec{r}+\frac{\vec{r}^{\prime}}{2}\right) e^{-\vec{p} \cdot \vec{r}^{\prime}} d^{3} r^{\prime}\right)^{*} \frac{1}{(2 \pi t)^{a}} \\
& =\int \psi^{*}\left(\vec{r}+\frac{\vec{r}^{\prime}}{2}\right) \psi\left(\vec{r}-\frac{\vec{r}^{\prime}}{2}\right) e^{\frac{2 \vec{p}}{} \vec{r}^{\prime}} d^{3} r^{\prime} \frac{1}{(2 n t)^{3}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& W^{2}=\frac{1}{(2 \pi \hbar)^{4}}\left|\int \psi^{x}\left(\vec{r}-\frac{\vec{r}}{2}\right) \psi\left(\vec{r}+\overrightarrow{r_{2}}\right) e^{-\overrightarrow{\vec{m}} \vec{r}} d^{3} \vec{r}^{\prime}\right|^{2} \\
& \begin{array}{l}
\text { Siherck } \frac{1}{(2 \pi \hbar)^{6}} \underbrace{\int\left|\psi\left(\vec{r}-\vec{r}^{\prime}\right)\right|^{2} d^{3} r^{\prime}}_{2^{3}} \underbrace{\int\left|\psi\left(\vec{r}+\frac{\vec{r}}{2}\right)\right|^{2} d^{3} r^{\prime}}_{2^{3}} \\
=\left(\frac{2}{h}\right)^{6}
\end{array}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int W(\vec{r}, \vec{p}, t) W^{\prime}(\vec{r}, \vec{p}, t) d^{3}-d^{3} p \\
& =\frac{1}{(2 \pi \hbar)^{6}} \int d^{3} r d^{3} p d^{3} r^{\prime} d^{3} r^{\prime \prime} \psi^{*}\left(\vec{r}-\frac{\vec{r}^{\prime}}{2}\right) \psi\left(\vec{r}+\frac{\vec{r}^{\prime}}{2}\right) \psi^{* k}\left(\vec{r}-\frac{\vec{r}^{\prime \prime}}{2}\right) \psi^{\prime}\left(\vec{r}+\frac{\vec{r}^{\prime \prime}}{2}\right) \\
& e^{-\frac{i t}{n} \vec{p} \cdot\left(\vec{r}^{\prime}+\vec{r}^{\prime \prime}\right)} \\
& =\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} r d^{3} r^{\prime} \psi^{*}\left(\vec{r}-\frac{\vec{r}^{\prime}}{2}\right) \psi\left(\vec{r}+\frac{\vec{r}^{\prime}}{2}\right) \psi^{\psi^{\prime}}\left(\vec{r}+\frac{\vec{r}^{\prime}}{2}\right) \psi^{\prime}\left(\vec{r}-\frac{\overrightarrow{2}}{2}\right) \\
& =\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} \hat{r} \psi^{*}(\hat{r}) \psi^{\prime}(\hat{\vec{r}}) \int d^{3} \hat{r} \psi^{1+}(\hat{\vec{r}}) \psi(\hat{\vec{r}})=\frac{1}{(2 \pi \hbar)^{3}}\left|\left\langle\psi^{\prime} \mid \psi\right\rangle\right|^{2} \\
& \hat{r}=\vec{r}+\vec{r}_{2}^{\prime}
\end{aligned}
$$

Problem [3]

Let $\psi(x)$ be an extremum of $S[\psi]$ and $\psi(x, \alpha)=\psi(x)+\alpha \eta(x)$ a 1-parameter curve through it with $\eta(x)=0$ on the boundary ot $\psi(x, \alpha)$ for small α then is a variation around $\psi(x)$ and any allowed variation cam be written as an $\psi(x, \alpha)$ with some suitable $\eta(x)$.

Then for vacation $\psi(x, \alpha)$

$$
\begin{array}{r}
\delta S=\frac{\partial S}{\partial \alpha} \delta \alpha=\int_{\Gamma}(\frac{\partial z}{\partial \psi} \frac{\partial \psi}{\partial \alpha}+\sum_{i=i}^{N} \frac{\partial L}{\partial\left(\frac{\partial \psi}{\partial x_{j}}\right)} \underbrace{\left.\frac{\partial\left(\frac{\partial \psi}{\partial x_{j}}\right)}{\partial \alpha}\right)} d^{N} x \delta \alpha \\
=\frac{\partial}{\partial x_{j}} \frac{\partial \psi}{\partial \alpha} \\
\text { pani.iut. } \int_{\Gamma}^{=}\left(\frac{\partial L}{\partial \psi}-\sum_{j=1}^{N} \frac{\partial}{\partial x_{j}} \frac{\partial L}{\partial\left(\frac{\partial \psi}{\partial x_{j}}\right)}\right) \underbrace{\frac{\partial \psi}{\partial \alpha} \delta \alpha d x+\text { boundary term }}_{\eta(x)} \begin{array}{l}
\quad\left(\frac{\partial \psi}{\partial \alpha}=0 \text { on } \partial T\right. \text { since } \\
\eta<0 \text { on } \partial \Gamma)
\end{array}
\end{array}
$$

Thus $\frac{\partial \mathcal{L}}{\partial \psi}-\sum_{j=1}^{N} \frac{2}{\partial x_{j}} \frac{\partial \alpha}{\partial\left(\frac{\alpha}{\partial \alpha_{j}}\right)}=0 \Rightarrow \delta S=0$
Conversely, if $\delta S=0$ for any allowed chivice of $y(x)$ then $\frac{\partial K}{\partial \psi}-\sum_{j=1}^{N} \frac{\partial}{\partial x_{j}} \frac{\partial \varphi}{\partial\left(\frac{\partial_{y}}{\partial_{j}}\right)}=0$

