[1] (a) We need the Tonier trans.

$$
\begin{aligned}
\phi(k) & =\hat{\psi}(x, 0)=\frac{1}{\sqrt{\sqrt{2 \pi} \sigma}} \frac{1}{\sqrt{2 \pi}} \int_{R} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma^{2}}} e^{i k_{0} x} e^{-i k x} d x \\
& =\frac{1}{\sqrt{\sqrt{2 \pi} \hat{\sigma}}} e^{-i\left(k-k_{0}\right) x_{0}} e^{-\frac{\left(k-k_{0}\right)^{2}}{4 \hat{\sigma}^{2}}} \quad \text { where } \hat{\sigma}=\frac{1}{2 \sigma}
\end{aligned}
$$

f. HWI, [3] (c) vita $k \rightarrow k-k_{0}$

Time dependence of a mode $k$ is $e^{-i \omega(k) t}$, $T T$ back with that at arbitary $t$ (formula from I 4.3)

$$
\begin{aligned}
& \psi(x, t)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi \pi} \frac{1}{2 \sigma}} \int_{\mathbb{R}} e^{-\sigma^{2}\left(k-k_{0}\right)^{2}} e^{-i\left(k-k_{0}\right) x_{0}} e^{i(k x-\omega(k)) t} d k \\
& \left.\begin{array}{l}
u=k-k_{0} \\
\hbar\left(x^{2}+2 k_{k} u+u^{2}\right)
\end{array}\right\} \quad \overline{\frac{\sigma}{4} \sqrt{2 \pi^{3}}} e^{i\left(k_{0} x-\frac{\hbar k_{0}}{2 m} t\right)} \int_{\mathbb{R}} e^{-\sigma^{2} u^{2}} e^{-i u x_{0}} e^{i u x} e^{-i \frac{\hbar}{m} k_{0} u t} e^{-i \frac{\hbar}{2 m} u^{2} t} d u \\
& \left.\omega=\frac{\hbar}{2 m}\left(k_{0}^{2}+2 \varepsilon_{0} u+u^{2}\right)\right\} \\
& =\sqrt{\frac{\sigma}{\sqrt{2 \pi^{3}}}} e^{i k_{0}\left(x-v_{p p} t\right)} \int_{\mathbb{R}} e^{-\left[u^{2}\left(\sigma^{2}+i \frac{\pi}{2 m} t\right)-i u\left(x-x_{0}-v_{p}-t\right)\right]} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{\sqrt{2 \pi} \sigma}} \frac{\sigma}{\sqrt{\pi}} e^{i k_{0}\left(x-v_{p h} t\right)} e^{-\frac{\left(x-x_{0}-v_{o} t\right)^{2}}{4\left(\sigma^{2}+i \frac{L_{m} t}{} t\right)}} \int_{\varphi} e^{-z^{2}}\left(\frac{d z}{d u}\right)^{-1} d z
\end{aligned}
$$

$e_{\text {is an inception contour in } \mathbb{C} \text {, tilted away from the real axis and shifted }}^{\text {a }}$ due to the transformation $z=u \sqrt{\sigma^{2}+i \frac{k}{2 m t}}-\frac{i\left(x-x_{0}(\underline{y})\right.}{2 \sqrt{\sigma+i t i t}}$



$$
\Rightarrow \psi(x, t)=\frac{1}{\sqrt{\sqrt{2 \pi} \sigma}} \frac{\sigma}{\sqrt{\sigma^{2}+\frac{i \pi}{2 m} t}} e^{i k_{0}\left(x-v_{p h} t\right)} e^{-\frac{\left(x-x_{0}-v_{q} t\right)^{2}}{4\left(\sigma^{2}+\frac{i \pi}{2 m} t\right)}}
$$

(b)




Problem [2]
We have it $\frac{\partial}{\partial t} \psi(\vec{r}, t)=-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{r}, t)+V(\vec{r}) \psi(\vec{r}, t)$
Using the Founier trausformakion $\psi(\vec{r}, t)=\frac{1}{(2 w t)^{3 / 2}} \int_{\mathbb{R}^{3}} \phi(\vec{p}, t) e^{\frac{2}{3} \vec{p} \cdot \vec{r}} d^{3} p$ we get
pantial intecpation in the lest term: $\int p \nabla_{p} e^{\dot{\bar{p} \vec{p}} d_{p}^{2}}=$ froma power senes after sepented applicision to the $\left.r_{e^{n}}^{n} \frac{\frac{1}{\hbar} \vec{p} \vec{r}}{=}=\left(-\frac{i}{\hbar} \frac{\partial}{\alpha}\right)^{r}\right)^{\frac{i}{\hbar} \vec{p} \vec{r}}$ power semies expansion of $V$.

$$
\frac{i}{(2 \pi \hbar)^{3 / 2}} \int_{R^{3}}\left[i t \frac{\partial}{\partial t} \phi(\vec{p}, t)-\frac{p^{2}}{2 m} \phi(\vec{p}, t)-V\left(\frac{i}{\hbar} \nabla_{p}\right) \phi(\vec{p}, t)\right] c^{\frac{i}{\hbar} \vec{p} \cdot \vec{r}} d^{3} p=0
$$

$\Rightarrow$ Expresion in braclet $[\cdots]=0$ (apply enverre $F T!$ )

Problem [3]
(a) $\frac{d}{d t} \int_{V(t)} \rho d^{3} r=0$ where $V$ is a volume encoring with the particles.
$v(t)$
Chose $\Delta V$ so small that effectively $\int_{V(t)} \rho d^{3} r \approx \rho \Delta V$; for simplicity et it be a cuboid.

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t} \int_{\Delta V} \rho d^{3} r=\frac{\partial \rho}{\partial t} \Delta V+\left(\nabla_{\rho}\right) \underbrace{\frac{d \vec{x}}{d t} \Delta V+\rho \frac{d(\Delta r)}{d t}}_{=\vec{V} \text { velocity }} \\
& =\frac{\partial \rho}{\partial t} \Delta V+\left(\nabla_{\rho}\right) \cdot \vec{\nabla} \Delta V+\rho\left[\frac{d(\Delta x)}{d t} \Delta y \Delta z+\Delta x \frac{d(\Delta y)}{d t} \Delta z+\Delta x \Delta y \frac{d(\Delta z)}{d t}\right] \\
& \frac{d\left(x_{2}-x_{1}\right)}{d t}=v_{2}-v_{1} \text { where } x_{2} x_{4} \text { are positions of the } \\
& =\frac{\partial s}{\partial t} \Delta V+\left(\nabla_{s}\right) \cdot \vec{v} \Delta V \\
& \text { four and Both press of } \Delta V, x_{2}-x_{1}=\Delta x \\
& v_{2}=v_{x}\left(x_{2}, t\right), v_{1}=v_{x}\left(x_{1}, t\right) \\
& +\rho[\underbrace{\Delta y}_{\nabla \vec{v}}\left[\frac{v\left(x_{2}\right)-v_{\Delta}(x)}{\Delta x}+\frac{v_{y}\left(y_{2}\right)-v_{2}\left(y_{1}\right)}{\Delta y}+\frac{v_{z}\left(z_{2}\right)-v_{z}(z)}{\Delta z}\right] \Delta v \\
& =\left[\frac{\partial s}{\partial t}+\left(\nabla_{\rho}\right) \cdot \vec{v}+\rho(\nabla \vec{r})\right] \Delta V \quad \stackrel{\vdots}{=} 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\psi_{1} \psi_{2}^{*}\right)=\frac{\partial \psi_{1}}{\partial t} \psi_{2}^{*}+\psi_{1} \frac{\partial \psi_{2}^{*}}{\partial t}=\frac{1}{i \hbar}\left(-\frac{\hbar^{2}}{2 m} \Delta \psi_{1}\right) \psi_{2}^{*}+\frac{1}{-i \hbar}\left(-\frac{\hbar^{2}}{2 m} \Delta \psi_{2}^{*}\right) \psi_{1} \\
& \quad+\frac{1}{i \hbar} \psi_{1} V \psi_{2}^{*}+\frac{1}{-i \hbar} \psi_{1} V^{*} \dot{\psi}_{2}^{*}-=0 \text { for } V \text { real } \\
& =\frac{\hbar}{2 m i}[\underbrace{}_{\psi_{1}} \Delta \underbrace{\Delta \psi_{1} \cdot \nabla \psi_{2}^{*}}_{\nabla \cdot\left(\psi_{1} \cdot \nabla \psi_{2}^{*}\right)}-\underbrace{\left.\nabla \psi_{1} \cdot \nabla \psi_{2}^{*}-\Delta \psi_{1} \psi_{2}^{*}\right]=-\nabla \cdot \vec{j}_{12}}_{\left.\nabla \cdot\left(\nabla \psi_{1}\right) \psi_{2}^{*}\right)} \\
& \text { with } \vec{J}_{12}=\frac{\hbar}{2 m i}\left[\psi_{2}^{*} \nabla \psi_{1}-\nabla_{\psi_{2}^{*}}^{*} \psi_{1}\right]
\end{aligned}
$$

(c) For $\rho=|\psi|^{2}$ the cont. equation holds for $\vec{\jmath}=\frac{\hbar}{2 m i}\left[\psi^{*} \nabla \psi-\nabla \psi^{*} \psi\right]$ Use $\psi=A e^{i / h}$ as causal with $A, S$ real

$$
\begin{aligned}
\nabla \psi=\frac{\nabla A}{A} \psi+\frac{i}{\hbar} \nabla S \psi \Rightarrow \vec{\jmath} & =\frac{\pi}{2 m i}\left[\psi^{*}\left(\frac{\nabla A}{A}+\frac{i}{\hbar} \nabla S\right) \psi-\psi^{*}\left(\frac{\nabla A}{A}-\frac{i}{\hbar} \nabla S\right) \psi\right] \\
& =\frac{\nabla S}{m} \psi^{*} \psi=\frac{\nabla S}{m} \rho
\end{aligned}
$$

In the classical Cunt $\nabla S \rightarrow \vec{p}$ i.e. $\vec{\jmath} \rightarrow \frac{\vec{p}}{m} \rho=\vec{v} \rho$

Problem [4]
Choose a volume $V$ that encloses part of the surface (the plane $z=0$ ). Concretely, let us choose a cuboid with two sides of area $A$ each that are parallel to the plane $z=0$. Those sides shall be at symmetric around $z=0$ at coordinates $z=-\varepsilon / 2$ and $z=+\varepsilon / 2$. The volume of the cuboid is then $V=A \varepsilon$ and the surface $z=0$ divides it into to equal parts. Now we integrate the continuity equation over the volume $V$ and apply Gauss' Law.

$$
\begin{aligned}
& \hat{m}_{s}=\text { nompal nat } \\
& \text { vector to the } \\
& \text { outsuile, on och } \\
& \text { true of the cuboid. }
\end{aligned}
$$

Now take the limit $\varepsilon \rightarrow 0$ (areas th move diver to the sinfuce). Then $V \rightarrow 0$ and the contribution of the four sides not poratele to the cinflace to $\int$ sugace go to zero

$$
\begin{equation*}
\Rightarrow 0 \approx \lim _{\varepsilon \rightarrow 0^{+}} \vec{\jmath}(\vec{S}+\varepsilon \hat{n}) \cdot \hat{n} A+\lim _{\varepsilon \rightarrow 0^{-}} \vec{j}(\vec{S}+\varepsilon \hat{n}) \cdot(-\hat{n}) A \tag{II}
\end{equation*}
$$

for points $\vec{S}$ on the sinface inside the cuboid; $\hat{n}$ is now normal unit vector Ire. the normal component of the current is continuous at the surface.
Since $\vec{\jmath}=\frac{\hbar}{2 m i}\left[\psi^{*} \nabla_{\psi}-\nabla \psi^{*} \psi\right]$ equation (D) is obviously fulfilled if both $\psi$ and the normal component of $\nabla \psi$ are continuous at the surface,

