## PHYS 606 - Spring 2015 - Homework I

## Problem [1] (equation numbers refer to my online manuscript)

Proof: We have

$$
\begin{gather*}
\hat{\delta}_{y}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \delta(x-y) e^{-i k x}=\frac{1}{\sqrt{2 \pi}} e^{-i k y}  \tag{1.37}\\
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \hat{\delta}_{y}(k) d k=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k(x-y)} d k=\delta(x-y) \tag{1.38}
\end{gather*}
$$

For the last $=\operatorname{sign}$ one needs to check that the integral expression on its left hand side satisfies the defining properties of $\delta$, i.e. it needs to be integrated over test functions to recover (1.33),
(1.34). The proof goes as follows. We will only check property (1.33), as Eq. (1.34) can be quite readily seen. It is then also sufficient to show it for $I=\mathbb{R}$. Then using the antisymmetry of the sin-function twice the $k$-integral is

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i k(x-y)} f(x) d k d x=\left.\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1}{x-y} \sin k(x-y)\right|_{k=-\infty} ^{k=\infty} f(x) d x \\
&=\frac{k}{\pi} \int_{\mathbb{R}} \lim _{k \rightarrow \infty} \frac{\sin k(x-y)}{k(x-y)} f(x) d x \tag{1.39}
\end{align*}
$$

We realize that the sinc-function in the limit $k \rightarrow \infty$ becomes more and more narrow so that all its strength will lie at $x=y$. We can thus expand $f$ around $u=0$ and just replace it by $f(y)$. The integral then becomes independent of $k$ and we easily substitute a new integration variable $u \equiv k(x-y)$ and using the well-known normalization of the sinc-function we get

$$
\begin{equation*}
\frac{k}{\pi} \int_{\mathbb{R}} \lim _{k \rightarrow \infty} \operatorname{sinc} k(x-y) f(y) d x=f(y) \frac{1}{\pi} \int_{\mathbb{R}} \operatorname{sinc} u d u=f(y) . \tag{1.40}
\end{equation*}
$$

I.e. the reverse Fourier transform of the plane wave has indeed the properties of the $\delta$-function.

Problem [2]
(a) Xamilion pt. $H=\frac{p^{2}}{2 m}+\frac{k}{2} x^{2}=E \Rightarrow \frac{p^{2}}{2 m E}+\frac{x^{2}}{\frac{2 E}{k}}=1$
$\Rightarrow$ Phasespace mwition is ellypse withe seminaxes $\sqrt{a^{2} m E}$ and $\sqrt{\frac{2 E}{K}}$
Bolur-Sommerfeld: $\delta p d q=\pi \sqrt{\operatorname{cim} E} \sqrt{\frac{2 E}{k}}=2 \pi \frac{E}{\omega} \quad$ with $\omega=\sqrt{\frac{k}{\omega}}$ ciren. of eleipse
On the other liand $\oint p d y \therefore$ nh

$$
\Rightarrow E=n \quad \frac{h \omega}{2 \pi}=n \hbar \omega
$$

All these evergy levels are off by $\frac{1}{2} \hbar w$ trom the fule QM result, but the rachiakion spectrom (invobring $\triangle E$ ) cau be prechicted acwrakly.
(b) Consider parthile with momentuin $p$ (inoving nigat); reflaited of $x=+\frac{L}{2}$ to oistain momewtum - $p$ (evaryy consenved); awother reflachion $-p \rightarrow p$ at $x=-\frac{L}{2}$

suure as the full QM result!
[3] (a) $|C|^{2} \int_{\mathbb{R}} e^{-\frac{-\left(x-x_{0}^{2}\right.}{2 \sigma^{2}}} d x=|c|_{z=\frac{x-x}{\sqrt{2}}}^{2} \int_{\mathbb{R}} e^{-z^{2}} d z \cdot \sqrt{2} \sigma=|C|^{2} \sqrt{2 \pi} \sigma$
-One bomus print if you calculated that inkeyal youreff:

$$
\left.\int_{R} e^{-z^{2}} d z=\left(\int_{\mathbb{R}^{2}} e^{-r^{2}} d^{2} r\right)^{1 / 2}=\left(2 \pi \int_{0}^{\infty} r e^{-r^{2}} d r\right)^{1 / 2}=\left(\pi \int_{0}^{\infty} e^{-u} d u\right)^{1 / 2}=\sqrt{\pi}\right]
$$

$\Rightarrow C=\frac{1}{\sqrt{\sqrt{2 \pi} \sigma}} \quad$ (X aphase which we ignore liere)

$$
\begin{aligned}
& \text { (b) }\langle x\rangle=\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}} x e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}} d x=\frac{1}{\sqrt{2 \pi \sigma}} \int_{\mathbb{R}}\left(\sqrt{2} \sigma u+x_{0}\right) e^{-u^{2}} \sqrt{2} \sigma d u \\
& u=\frac{x-x_{0}}{\sqrt{2 \sigma}}=\frac{x_{0}}{\sqrt{\pi}} \int_{R} e^{-u^{2}} d u=x_{0} \\
& (4 x)^{2}=\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}}\left(x-x_{0}\right)^{2} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}} d x=\frac{1}{\sqrt{\pi}} \int_{2=\frac{x-x 0}{\sqrt{2}}} 2 \sigma^{2} u^{2} e^{-u^{2}} d u=-\frac{\sigma^{2}}{\sqrt{\pi}} \int_{\mathbb{R}} u \frac{d}{d u} e^{-u^{2}} d u \\
& =\left[\frac{-\sigma^{2}}{\sqrt{\pi}} \int_{0}^{-u^{2}}\right]_{-N}^{+\infty}+\frac{\sigma^{2}}{\sqrt{\pi}} \int_{R} e^{-u^{2}} d u=\sigma^{2}
\end{aligned}
$$

Center $x_{0}$ and widte $\sigma$ are equal to "sutrage $x$ "and $\sqrt{\text { vanamae }}=\Delta x$, resp.

$$
\begin{aligned}
& \text { (c) } \hat{f}(k)=(2 \pi)^{-k / 2} \frac{1}{\sqrt{k \pi \sigma}} \int_{\mathbb{R}} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma^{2}}} e^{-i k x} d x \\
& =\frac{1}{(2 \pi)^{3 / 4} \sigma^{1 / 2}} e^{-i k x_{0}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{4 \sigma^{2}}} e^{-i k \boldsymbol{x}} d x \\
& \text { Compute squice } \rightarrow=\frac{1}{\left(2_{\pi}\right)^{3 / 4}+\sigma^{1 / 2}} e^{-i k x_{0}} \int_{\mathbb{R}} e^{-\left(\frac{x}{2 \sigma}+i k \sigma\right)^{2}} d x e^{-\sigma^{2} k^{2}} \\
& =\frac{2^{1 / 4} \sigma^{1 / 2}}{\pi^{3 / 4}} e^{-i k x_{0}} e^{-\sigma^{2} k^{2}} \int_{-\infty, 0-2 k \sigma^{2}} e^{-u^{2}} d u=\sqrt[4]{\frac{2}{\pi}} \sqrt{\sigma} e^{-i k x_{0}} e^{-\sigma^{2} k^{2}}
\end{aligned}
$$


ult. sinhour

$$
\begin{aligned}
& \oint e^{-u^{2}} d u=0 \quad \text { so } \int_{-\infty}^{+\infty-2 i k \sigma^{2}} e^{-x^{2}} d^{\prime} d u=\int_{-\infty}^{+\infty} e^{-u^{2}} d u=\sqrt{\pi} \\
& \text { Porthisclised } \\
& \text { contour sin ce } \\
& e^{-u^{2} \text { conclighc }} \\
& \text { cong wine }
\end{aligned}
$$

We can write this in "standard form" with a width in momentum space

$$
\hat{\sigma}=\frac{1}{2 \sigma} ; \text { hen } \hat{f}(k)=\frac{1}{\sqrt{\sqrt{2 \pi} \hat{\sigma}}} e^{-i k x_{0}} e^{-\frac{k^{2}}{4 \hat{\sigma}^{2}}}
$$



Using the result from (b): $\langle k\rangle=0$
(phase $e^{-i k x_{0}}$ drops out) $\quad(\Delta k)^{2}=\left\langle k^{2}\right\rangle=\sigma_{k}^{2}=\frac{1}{4 \sigma^{2}}$

$$
\Rightarrow \Delta x \Delta k=\sigma \sigma_{k}=\frac{1}{2}
$$

Hamilton fct. $H(x, p)=\frac{p^{2}}{2 m}-b x$
Tamillon-Jacob: $\frac{1}{2 m}\left(\frac{\partial s}{\partial x}\right)^{2}-b x+\frac{\partial s}{\partial t}=0 \quad$ with $p=\frac{\partial s}{\partial x}$
Since $\frac{\partial \hbar}{\partial t}=0$ tive is separable: $S=W(x)-E t$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2 m}\left(\frac{d W}{d x}\right)^{2}=E+b x \Rightarrow \frac{d W}{d x}= \pm \sqrt{2 m(E+b x)} \\
& \Rightarrow W(x)= \pm \frac{1}{3 m b}[2 m(E+b x)]^{3 / 2}+\text { const. } \\
& \Rightarrow S(x, t)= \pm \frac{1}{3 \operatorname{sib} b}[2 m(E+b x)]^{3 / 2}-E t+\text { const. }
\end{aligned}
$$

$E$ is constant of motion clvose it a the variable ofter canonical trawy.
$\Rightarrow$ Associated momentum $\beta=\frac{a s}{a x}=$ const. and $\beta= \pm \frac{1}{b} \sqrt{\alpha m\left(t+b_{x}\right)}-L$

$$
\Rightarrow x=\frac{b}{2 m}(t+\beta)^{2}-\frac{E}{b}
$$

Thitial conclitions $x(0)=\frac{b \beta^{2}}{2 m}-\frac{E}{b}=x_{0} \quad \dot{x}(0)=\frac{b \beta}{m}=\frac{1}{=} v_{0}$

$$
\begin{aligned}
& \Rightarrow \beta=\frac{m}{b} v_{0} \text { and } E=\frac{b^{2}}{2 m} \frac{m^{2}}{b^{2}} v_{0}^{2}-b x_{0}=\frac{1}{2} m v_{0}^{2}-b x_{0} \\
& \Rightarrow x(t)=\frac{b}{2 m}\left(t+\frac{m}{b} v_{0}\right)^{2}-\frac{m v_{0}^{2}}{2 b}+x_{0}
\end{aligned}
$$

