PHYS 606 - Spring 2015 - Homework I

Problem [1] (equation numbers refer to my online manuscript)

Proof: We have

$$\hat{\delta}_{y}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(x - y)e^{-ikx} = \frac{1}{\sqrt{2\pi}}e^{-iky}$$
(1.37)

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} \hat{\delta}_y(k) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-y)} dk = \delta(x-y)$$
(1.38)

For the last = sign one needs to check that the integral expression on its left hand side satisfies the defining properties of δ , i.e. it needs to be integrated over test functions to recover (1.33),

(1.34). The proof goes as follows. We will only check property (1.33), as Eq. (1.34) can be quite readily seen. It is then also sufficient to show it for $I = \mathbb{R}$. Then using the antisymmetry of the sin-function twice the k-integral is

$$\frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{ik(x-y)} f(x) dk dx = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{1}{x-y} \sin k(x-y) \Big|_{k=-\infty}^{k=\infty} f(x) dx$$

$$= \frac{k}{\pi} \int_{\mathbb{R}} \lim_{k \to \infty} \frac{\sin k(x-y)}{k(x-y)} f(x) dx . \quad (1.39)$$

We realize that the sinc-function in the limit $k \to \infty$ becomes more and more narrow so that all its strength will lie at x = y. We can thus expand f around u = 0 and just replace it by f(y). The integral then becomes independent of k and we easily substitute a new integration variable $u \equiv k(x - y)$ and using the well-known normalization of the sinc-function we get

$$\frac{k}{\pi} \int_{\mathbb{R}} \lim_{k \to \infty} \operatorname{sinc} k(x - y) f(y) dx = f(y) \frac{1}{\pi} \int_{\mathbb{R}} \operatorname{sinc} u \, du = f(y). \tag{1.40}$$

I.e. the reverse Fourier transform of the plane wave has indeed the properties of the δ -function.

Problem [2]

(a) Hamilton fit. $H = \frac{\rho^2}{2m} + \frac{k}{2} x^2 = E \implies \frac{\rho^2}{2mE} + \frac{x}{2}$	<u></u>
=> Phase space makin is ellipse with semicires tame and	K ZE
Bolir-Sommerfeld: \$ polq = T time 12 = 2 T w	with w= / an
On the other hand $\oint pdq = nh$ $\Rightarrow E = n \frac{h\omega}{2\pi} = nh\omega \text{all these energy level}$ from the full QH normal, the field QH normal, the field QH normal of th	but the rediation
(b) Consider particle with momentum p (moving right); reflected at	$X = +\frac{L}{2} lv$
oistein momentum -p (every conserved); another reflection -	1 2
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & \\ & & & & $	
$= \frac{p^2}{2m} = \frac{h^2}{8mL^2}$	some as the full QM result!

[3] (a)
$$|C|^{\frac{1}{2}}\int e^{-\frac{k^2-k^2}{2\sigma^2}} dx = |C|^{\frac{1}{2}}\int e^{-\frac{k^2}{2}}dz \sqrt{k^2}\sigma = |C|^2\sqrt{k\pi}\sigma$$

$$\frac{1}{2}\int e^{-\frac{k^2-k^2}{2\sigma^2}}\int e^{-\frac{k^2-k^2}{2\sigma^2}} dx = |C|^2\sqrt{k\pi}\sigma$$

[Au bows point if you calculoid that integral garriet.]

$$\int e^{-\frac{k^2}{2}}dz = \left(\int_{\mathbb{R}^2} e^{-\frac{k^2-k^2}{2\sigma^2}}dx - \frac{1}{\sqrt{k\pi}\sigma}\int_{\mathbb{R}^2} e^{-\frac{k^2-k^2}{2\sigma^2}}dx - \frac{1}{\sqrt{k\pi}\sigma}\int_{\mathbb{R}^2} e^{-\frac{k^2-k^2}{2\sigma^2}}dx = \frac{1}{\sqrt{k\pi}\sigma}\int_{\mathbb{R}^2} (k\overline{c}\sigma u + k_z)e^{-\frac{k^2-k^2}{2\sigma^2}}dx = \frac{1}{\sqrt{k\pi}\sigma}\int_{\mathbb{R}^2} e^{-\frac{k^2-k^2}{2\sigma^2}}dx = \frac{1}{\sqrt{k\pi}\sigma}\int_{$$

Problem [4]

Hamilton fet. $\#(x,p) = \frac{p^2}{2m} - bx$ Hamilton - Jacobi = 2m (25)2 - bx + 25 = 0 with $p = \frac{\partial S}{\partial x}$ Since It = 0 time is separable: S = W(x) - Et $\Rightarrow \frac{1}{2m} \left(\frac{dW}{dx}\right)^2 = E + bx \Rightarrow \frac{dW}{dx} = \pm \sqrt{2m(E+bx)}$ \Rightarrow W(x) = $\pm \frac{1}{3mb} \left[dm \left(E + bx \right) \right]^{3/2} + const.$ ⇒ S(x,t) = ± 1/3ub [2m(E+bx)]3/2 - Et + const. E is constant of motion choose it a the variable after commical transf. => Associated momentum $\beta = \frac{\partial S}{\partial x} = const.$ and $\beta = \pm \frac{1}{b} \sqrt{dm(E+bx)} - L$ $\Rightarrow x = \frac{6}{2m} (t+\beta)^2 - \frac{E}{6}$ Thinkal concliners $x(0) = \frac{6\beta^2}{6} - \frac{\epsilon}{6} = x_0$ $\dot{x}(0) = \frac{5\beta}{m} = v_0$ $\Rightarrow \beta = \frac{m}{b} V_0$ and $E = \frac{b^2}{2m} \frac{m^2}{b^2} V_0^2 - b x_0 = \frac{1}{2} m V_0^2 - b x_0$ $\Rightarrow x(t) = \frac{b}{2m} (t + \frac{m}{b} v_0)^2 - \frac{mv_0^2}{2b} + x_0$