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Chapter 1

From Classical Mechanics to Wave

Mechanics

We have experimental evidence, some of which is briefly mentioned in Sec. I.2.1 below, that the
laws of classical mechanics (CM) are insufficient in the microscopic realm. More precisely, we have
to replace CM with another theory, quantum mechanics (QM), when the classical action S for the
motion is comparable to or smaller than a new scale given by Planck’s constant h, i.e. if

S . h . (1.1)

The value of h is
h = 6.62606957× 10−34m2kg/s . (1.2)

Recall that for a free point particle the position and time dependent action is S = ~p ·~x−Et where
momentum is ~p, position is ~x, energy is denoted by E and time is t. The question is whether, say
for a bound state, typical values of displacement and momentum are small enough. For example
for an electron with kinetic energy equal to 13.6 eV (ionization energy of elemental hydrogen),
and for a displacement given by the Bohr radius of 5.3× 10−11 m we find |~p||~x| = 1.1× 10−34 m2

kg/s, so atomic physics involves quantum mechanics! We will find a more quantitative argument
about what it means to go from quantum mechanics to a classical limit in Ch. II.

We will leave in place the constraint from classical mechanics that physical velocities should
be much smaller than the speed of light, |~v| ≪ c to avoid relativistic effects.

This manuscript follows quite shamelessly the book by Merzbacher [1], supplemented with
elements from other authors, e.g. Fick [2]. For the mathematical background of Hilbert spaces
and functional analysis, which is mostly evaded here for time constraints I refer to Fano [3]. There
are many more good books on quantum mechanics which the reader can readily find.

1.1 Preview: Axioms of Quantum Mechanics

� Recall the axioms of classical mechanics (cf. Arnold, or Fries : Analytical Mechanics).

(A) A particle (“point mass”) and its motion are described by a differentiable map x : R → R
3,

t 7→ x(t). A system of N particles correspondingly is a map into R
3N by direct product.

(B) Galileo’s Principle of Relativity: There exist coordinate systems (called “inertial”) with the
following properties: (i) All laws of classical mechanics at all moments of time are the same
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in all inertial coordinate systems. (ii) All coordinate systems in uniform, rectilinear motion
with respect to an inertial one (i.e. connected by transformations of the Galilei group G(3, 1)
are themselves inertial.

(C) Newton’s Principle of Determinacy: The initial state of a mechanical system, i.e. the totality
of positions and velocities of its point masses at some moment in time, uniquely determines
all of its motion.

In essence classical mechanics is a theory of second order differential equations (or equivalent
systems of equations) whose solutions are the “motion”, i.e. the maps x(t).
� We will spend the first half of this course convincing ourselves that in the microscopic world
these axioms are superseded by the following set.

(Q1) A system of particles is described by a complex Hilbert space H; composite systems con-
sisting of N subsystems are described by the direct product of the Hilbert spaces of the
subsystems. Each possible state of the system is described by a ray (or unit vector) |ψ〉.

(Q2) Observables, i.e. measurable physical quantities1, are represented by linear, self-adjoint op-
erators acting on H. The possible outcomes of a measurement of an operator O are its
eigenvalues λ.

(Q3) If a system is in a state |ψ〉 the probability to measure the eigenvalue λ for an observables
O is w = |〈φλ|ψ〉|2 where |φλ〉 is an eigenstate for the eigenvalue λ. After the measurement
the system will be in an eigenstate of λ.

(Q4) There is a linear, unitary (projective) representation of the Galilei group G(3, 1) on H and
the laws of quantum mechanics are invariant under Galilei transformations, as long as no
measurement is performed on the system.

� Consistency with classical mechanics. We will find that in quantum mechanics expectation
values for positions 〈x〉 move as a function of time according to the laws of classical mechanics
(Ehrenfest Theorem).

1.2 The Case For Matter Waves

1.2.1 Experimental Findings

� The idea that matter can be described as waves under certain circumstances was established in
a series of milestone experiments and their interpretation in the early 20th century. They roughly
fall in two categories: discreteness of energy for bound states of matter or of light interacting with
such bound states, and interference effects for free particles similar to those of wave optics.
� Planck’s blackbody radiation formula (1900). Assuming that oscillators in a blackbody can
only take quantized energies

En = nhν (1.3)

where n ∈ N, ν is the frequency and h is a new scale called Planck’s constant, Planck found that
the energy density of the radiation field is

u(ν, T ) =
8πhν3

c3
1

ehν/kT − 1
(1.4)

1At least this applies to observables which are explicitly depending on coordinates x or momenta p.
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consistent with experimental results. Here T is temperature, c is the speed of light and k is
Boltzmann’s constant. This is how the existence of a scale h was first postulated. In the limit
hν ≪ kT (i.e. many quanta present at a given temperature) we recover the classical result

u(ν, T ) → 8π

c3
ν2kT (1.5)

(Rayleigh’s law). Note how h conveniently cancels in the classical limit. We interpret this return
to classical physics as a consequence of the fact that “quantization” of energy is unimportant if
many quanta are available. On the other hand, in the limit hν ≫ kT quanta are rare and have
large energy (compared to the thermal energy), and this limit is the deep quantum regime of
Planck’s formula

u(ν, T ) → 8πhν3

c3
e−hν/kT (1.6)

(Wien formula).
� Einstein’s explanation of the photoelectric effect (1905): Einstein’s idea that electromagnetic
waves of frequency ν come in quanta of energy

E = hν (1.7)

is another cornerstone of the early days of quantum physics.
� Stable atomic orbits and atomic spectra (Bohr, 1913), (Bohr and Sommerfeld, 1916): Only
certain classical trajectories of electrons are allowed in an atom. They can be determined by
Bohr’s quantization condition ∮

pidqi = nh (1.8)

where again n ∈ N and qi, pi, i = 1, . . . , s are pairs of conjugate generalized coordinates and
momenta. The hydrogen atom will be discussed as a simple example at the end of this subsection.
In the Bohr-Sommerfeld model absorbed or emitted electromagnetic waves lead to an increase or
decrease, respectively, of the energy of an electron by moving it between discrete levels, leading
to discrete series of absorption and emission spectra with allowed frequencies

ν =
1

h
|E ′ − E| (1.9)

where E and E ′ are the initial and final energy level. Bohr-Sommerfeld quantization works for a
number of simple systems besides the hydrogen atom.
� Interference and diffraction effects: A direct indication that free particles can behave like
waves is found in scattering experiments with slits or periodic lattices (Davisson and Germer,
1927). De Broglie postulated that particles of momentum p resemble plane waves of wave length

λ =
h

p
, (1.10)

the de Broglie wave length of a particle.
� Preliminary resolution: A particle-wave duality emerges for matter (electrons, protons, atoms,
etc.) as well as for electromagnetic radiation (“photons”). Single particles, e.g. sent into a double
slit experiment, are still detected as single particles on the other side (instead of a spread out
wave). On the other hand a beam of many particles in the same experiment forms an interference

5



pattern similar to wave optics. We conclude that the wave aspect of the particles describes their
statistical distribution.

� Example: Bohr-Sommerfeld quantization of circular orbits in the hydrogen atom. We need to
analyze phase space trajectories of classical motion in the Kepler problem. In suitable spherical
coordinates the kinetic and potential energies for an electron of mass m are

T =
1

2
m

(
ṙ2 + r2φ̇2

)
, U = − e2

4πǫ0r
(1.11)

(see e.g. Fries : Analytical Mechanics, or any good mechanics textbook). The Lagrange function
and total energy are L = T − U and E = T + U respectively. The conjugate momentum for the
azimuthal angle φ is

pφ =
∂L

∂φ̇
= mr2φ̇ = Lz (1.12)

i.e. it is equal to the angular momentum component perpendicular to the plane of the orbit. The
quantization condition for φ gives

∮
pφdφ =

∫ 2π

0

mr2φ̇ = 2πmr2φ̇ (1.13)

which has to be set equal to nh. Hence the angular momentum Lz is quantized in multiples of
the modified Planck constant ~,

Lz = n~ where ~ =
h

2π
. (1.14)

From the Lagrange equation for r we find the radial equation of motion

mr̈ −mrφ̇2 +
e2

4πǫ0r2
= 0 (1.15)

For circular motion (r̈ = 0) the quantization of Lz (note that the second term is equal to L2
z/(mr

3))
then translates directly into a quantization condition for the radius of the motion

r = n24πǫ0~
2

me2
(1.16)

which leads for n = 1 to the well known Bohr radius r1 = 5.29 × 10−11 m if the electron mass is
used. The total energy for an orbit with given n can then be calculated to be

E = − 1

n2

2π2me4

(4πǫ0)2h2
≡ − 1

n2
RH (1.17)

where RH is called the Rydberg constant. For n = 1 we obtain the well known hydrogen ground
state binding energy of −13.6 eV. The gaps between the energy levels correspond to the experi-
mentally found series of the hydrogen emission spectrum (Lyman, Balmer, etc.).
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1.2.2 The Concept of Wave Functions

� Interference and diffraction phenomena lead us to believe that free particles should be de-
scribed by traveling waves and that de Broglie’s equation connects particle momentum and wave
length.
� Bound particles taking only certain energies are reminiscent of standing waves in classical
physics (strings, membranes, etc.). A “quantization” of wave length forced by boundary conditions
translates into quantized energies.
� Hence we postulate that particles can be described by scalar fields

ψ(~r, t) = ψ(x, y, z, t) (1.18)

called the wave functions of the particles. These could be real or complex valued which will be
clarified below.
� The restriction to scalar fields is for simplicity only at this point. Quantum theory allows for
fields with internal structure, e.g. spin. Vector fields or spinor fields are allowed and are typically
discussed in an advanced quantum course. This means for now we neglect the spin of particles.
� ψ itself could be negative or even complex and does not lend itself to a direct probabilistic
interpretation. Following the example of electrodynamics, where intensity is the square of the
wave field, we postulate that the absolute value square of the wave function

ρ(~r, t) = |ψ(~r, t)|2 (1.19)

is the probability density associated with the wave function ψ. ρ is real and positive definite (but
might still need to be properly normalized as discussed later). ψ is then sometimes called the
probability amplitude. Note that for a complex number a we define |a|2 = aa∗ where ∗ is our
notation for complex conjugation.
� Superposition Principle: In order to exhibit interference effects we need to postulate the
superposition principle to hold. If ψ1(~r, t) and ψ2(~r, t) describe possible physical situations (an
amplitude for positions of particles as a function of time) then

ψ(~r, t) = αψ1(~r, t) + βψ2(~r, t) (1.20)

where α, β are complex numbers, is also a possible physical situation.
� Let us consider the double slit experiment as an example. Suppose only one slit is open at a
time and a particle going through slit i, i = 1, 2 is described by a wave function ψi. The intensities
are given by |ψi|2 respectively. When both slits are open at the same time the wave function is a
superposition ψ1 + ψ2 and (modulo proper normalization) the new probability density is

|ψ1 + ψ2|2 6= |ψ1|2 + |ψ2|2. (1.21)

The additional mixed terms on the left hand side, ψ1ψ
∗

2+ψ
∗

1ψ2, are responsible for the interference
pattern.

1.3 Plane Waves

� Combining the results of the last section and de Broglie’s postulate we assume that free
particles of momentum ~p are represented by plane waves. Plane waves have a characteristic wave
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vector ~k and (angular) frequency ω. Recall the connection with wave length λ and (regular)
frequency ν for a plane wave

k =
2π

λ
, ω = 2πν (1.22)

where k = |~k|. The direction of ~k gives the direction of propagation of the plane wave and should

coincide with the direction of motion of the particle, i.e. ~k ‖ ~p. Then from de Broglie we postulate

~p = ~~k (1.23)

for plane waves representing free particles.
� The most general form of a plane wave of given ~k and ω is

ψ(~r, t) = A cos
(
~k · ~r − ωt

)
+B sin

(
~k · ~r − ωt

)
. (1.24)

It is an experimental fact that we do not observe oscillations in intensity for single free particles or
beams of particles. In other words, |ψ|2 should actually be translationally invariant for plane waves
representing free particles along the direction of propagation. Let us investigate the consequences
of a small shift in propagation direction ~δ = ǫ~k/k2, with small positive ǫ, on ψ. We will demand

ψ(~r + ~δ, t) = aψ(~r, t) (1.25)

such that a is a pure phase, i.e. |a|2 = 1. This will ensure that |ψ(~r+~δ, t)|2 = |ψ(~r, t)|2. Eq. (1.25)
has the solution a = e±iǫ if B = ±iA.

Proof: The left hand side yields

ψ
(
~r + ~δ, t

)
= A cos

(
~k · ~r − ωt+ ǫ

)
+B sin

(
~k · ~r − ωt+ ǫ

)

= A
[
cos

(
~k · ~r − ωt

)
cos ǫ− sin

(
~k · ~r − ωt

)
sin ǫ

]

+B
[
sin

(
~k · ~r − ωt

)
cos ǫ+ cos

(
~k · ~r − ωt

)
sin ǫ

]
. (1.26)

Upon plugging in B = ±iA we get

ψ
(
~r + ~δ, t

)
= A

[
cos

(
~k · ~r − ωt

)
± i sin

(
~k · ~r − ωt

)]
cos ǫ

± iA
[
cos

(
~k · ~r − ωt

)
± i sin

(
~k · ~r − ωt

)]
sin ǫ = ψ(~r, t)e±iǫ . (1.27)

� We have thus found an important property of quantum theory. We are forced to admit
complex valued wave functions to accommodate experimental results. This fact is often phrased
as “the phase of a free particle is not observable”. Note the difference with electrodynamics where
detectors exist that can detect the “amplitudes” ~E or ~B directly instead of just the intensities E2

and B2.
� We fix the choice B = +iA and now have the general form of a plane wave permitted in
quantum mechanics

ψ(~r, t) = Aei(
~k·~r−ωt) . (1.28)

� The (angular) frequency ω is yet undetermined. We expect it to be fixed by a dispersion

relation ω = ω(~k) as for classical waves. We recall that experimental results indicate a relation
between frequency and energy,

E = hν = ~ω . (1.29)
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Using the usual relation E = p2/(2m) for free particles we can then postulate the dispersion
relation

ω =
~

2m
k2 (1.30)

for plane waves describing free particles of mass m. We will revisit this point in more detail below.

1.4 Wave Packets

The Fourier transformation is such an important tool in quantum mechanics that we review some
basic properties before continuing.

1.4.1 Fourier Transformations

� Recall that for a suitable function f : Rn → C (or R), n ∈ N we define the Fourier transfor-
mation as

f̂(~k) =
1√
2π

n

∫

Rn

f(~r)e−i~k·~rdnr . (1.31)

For most applications here n = 3 so we have used vector arrows for “positions” ~x and “wave
vectors” ~k. “Suitable” usually means that f has to be integrable (i.e. of type L1) or square-
integrable (L2).2 The Fourier transformed function f̂ is again a function R

n → C.
� Under certain conditions f can be recovered from f̂ by the inverse Fourier transformation.
Then

f(~r) =
1√
2π

n

∫

Rn

f̂(~k)ei
~k·~rdnk . (1.32)

� Fourier transformations can be extended to a certain class of distributions or generalized

functions, most notably Dirac’s δ-function. Recall that δ is defined in one dimension by
∫

I

δ(x)f(x)dx = f(0) (1.33)

for any open interval I on the real line containing 0, and
∫

I

δ(x)f(x)dx = 0 (1.34)

for any other open interval. This has to hold for arbitrary test functions f : R → R. Thus
δ appears to be a function that vanishes everywhere except for the point 0 where it diverges.
However, it can not be rigorously defined as a function that way.
� The Fourier transformed δ-function is a constant function, to be precise

δ̂(k) =
1√
2π

∫
∞

−∞

δ(x)e−ikxdx =
1√
2π

. (1.35)

� More generally: the δ-function in 1 dimension shifted by a parameter y is the Fourier partner
of (the spatial part) of a plane wave in y:

δ(x− y)
Fourier−−−−→ 1√

2π
e−iky . (1.36)

2Mathematical background information is often mentioned but not emphasized in this course. Readers interested
in more rigorous definitions and proofs are encouraged to read up in the mathematical literature, e.g. in the book
of Fano.
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Proof: We have

δ̂y(k) =
1√
2π

∫
∞

−∞

δ(x− y)e−ikx =
1√
2π
e−iky (1.37)

and conversely . . . this will be a HW problem this year.

1√
2π

∫
∞

−∞

eikxδ̂y(k)dk =
1

2π

∫
∞

−∞

eik(x−y)dk = δ(x− y) (1.38)

For the last = sign one needs to check that the integral expression on its left hand side satisfies
the defining properties of δ, i.e. it needs to be integrated over test functions to recover (1.33),
(1.34). The proof goes as follows. We will only check property (1.33), as Eq. (1.34) can be quite
readily seen. It is then also sufficient to show it for I = R. Then using the antisymmetry of the
sin-function twice the k-integral is

1

2π

∫

R

∫

R

eik(x−y)f(x) dkdx =
1

2π

∫

R

1

x− y
sin k(x− y)

∣∣∣∣
k=∞

k=−∞

f(x) dx

=
k

π

∫

R

lim
k→∞

sin k(x− y)

k(x− y)
f(x) dx . (1.39)

We realize that the sinc-function in the limit k → ∞ becomes more and more narrow so that all
its strength will lie at x = y. We can thus expand f around u = 0 and just replace it by f(y).
The integral then becomes independent of k and we easily substitute a new integration variable
u ≡ k(x− y) and using the well-known normalization of the sinc-function we get

k

π

∫

R

lim
k→∞

sinc k(x− y) f(y)dx = f(y)
1

π

∫

R

sincu du = f(y) . (1.40)

I.e. the reverse Fourier transform of the plane wave has indeed the properties of the δ-function.
� The δ-function can be generalized to n dimensions in a straightforward way but we skip details
here for brevity.
� Parseval’s Theorem. Let f , g, be functions Rn → C both integrable (L1) and square-integrable
(L2), and let f̂ and ĝ be their Fourier transforms, respectively. Then

∫

Rn

f(~r)g∗(~r) dnr =

∫

Rn

f̂(~k)ĝ∗(~k) dnk . (1.41)

Proof:

∫

Rn

f̂(~k)ĝ∗(~k) dnk =
1

(2π)n

∫

Rn

∫

Rn

dnrdnr′
∫

Rn

dnk e−ik(x−x′)f(~r)g∗(~r)

=

∫

Rn

∫

Rn

dnrdnr′ δn(~r − ~r′)f(~r)g∗(~r′) =

∫

Rn

dnr f(~r)g∗(~r) (1.42)

� Corollary: Plancherel’s Theorem. From Parseval’s Theorem it follows immediately that the
Fourier transformation preserves L2-norms, i.e.

∫

Rn

|f(~r)|2 dnr =
∫

Rn

|f̂(~k)|2 dnk . (1.43)
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� Transformation of derivatives. Let f : Rn → C be a differentiable function such that the
Fourier transformation exists for f and for all of its partial derivatives ∂f/∂rj, j = 1, . . . , n. Then
we have

∂̂f

∂rj
= ikj f̂ (1.44)

i.e. derivatives are factors in Fourier space and vice versa.
Proof: By partial integration one can see that

∂̂f

∂rj
=

∫

Rn

e−i~k·r ∂f

∂rj
dnr =

∫

Rn

(ikj)e
−i~k·rf(~r) dnr = ikj f̂(~k) (1.45)

if boundary terms can be neglected, e.g. for square integrable functions.

1.4.2 Fourier Analysis of Wave Packets

� Plane waves with wave vector ~k describe free particles with sharply defined momentum ~p = ~~k
which are unlocalized in space. The superposition principle allows us to build other solutions from
plane waves which are localized in space. In general a free particle wave function could take the
form

ψ(~r, t) =
1

√
2π

3

∫
φ(~k)ei(

~k·~r−ω(~k)t)d3k (1.46)

if φ(~k) is a suitable function (i.e. all the necessary integrals exist). This is generally called a wave

packet.
� Obviously φ(~k) is the Fourier transformation of the wave function ψ(~r, 0) at t = 0, i.e.

φ(~k) =
1

√
2π

3

∫
ψ(~r, 0)e−i~k·~rd3r (1.47)

We sometimes switch variables from ~k to ~p and write φ(~p). φ is thus usually referred to as the
wave function in momentum space.
� For now let us analyze wave packets at a fixed point in time, say at t = 0. For simplicity
let us start in 1 dimension. φ(k) describes the distribution of modes in the wave packet, i.e. the
relative weights of plane waves of momentum k.
� Let us assume a typical case where φ(k) resembles some real-valued function which has a peak
at k = k0 and falls off monotonically on both sides with a characteristic width ∆k around the
peak. After introducing a new variable u = k − k0 we can write the wave function as a product

ψ(x, t) =
1√
2π
eik0xH(x) (1.48)

of a plane wave with the (most likely) momentum k0 and a modulation function H(x) (“hull”).
For the latter we have

H(x) =

∫
φ(u+ k0)e

iux du . (1.49)

We can qualitatively analyze H(x) in the following way.

• For small x (precisely: if x∆k ≪ π) all the strength of the falling function φ(u+k0) (centered
around u = 0) is contained within one half period of the cos-function in eiux and thus the
integral defining H has its maximum value.
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• For large x (precisely: if x∆k ≫ π) many oscillations of eiux lie within the width ∆k of
φ(u+k0) and the integral for H is dominated by cancellations, hence the value of H is small.

Therefore H(x) is a function centered around 0 that goes to zero on both sides with characteristic
width ∆x ∼ π/∆k.
� To summarize this qualitative argument, a wave packet of width ∆k in momentum (or wave
vector) space corresponds to a wave packet with width ∆x in coordinate space, and the two widths
are reciprocal to each other.
� We just qualitatively confirmed Heisenberg’s uncertainty principle, ∆x∆k ∼ O(1). This
relation is a natural property of waves and not specific to quantum mechanics.
� We can make this uncertainty relation mathematically precise. Let f : R → C be a differ-
entiable function for which the Fourier transformation f̂ exists. Furthermore let f have L2-norm
unity, i.e. ∫

R

|f |2dx = 1 . (1.50)

Let x0 and k0 be arbitrary points in coordinate space and wave vector space, respectively. We
define the variation of f around x0 and of f̂ around k0 as

(∆x)2 =

∫

R

(x− x0)
2|f(x)|2 dx , (1.51)

(∆k)2 =

∫

R

(k − k0)
2|f̂(k)|2 dk , (1.52)

respectively.3

� Heisenberg’s Uncertainty Principle. In above situation the inequality

∆x∆k ≥ 1

2
(1.53)

holds.
Proof: Here we will set x0 = 0, k0 = 0 for convenience but the following proof will go through

with other choices as well. First we note that

(∆k)2 =

∫ ∣∣∣kf̂(k)
∣∣∣
2

dk =

∫ ∣∣∣∣
d

dx
f(x)

∣∣∣∣
2

dx (1.54)

due to Plancherel’s Theorem. Then we have due to Schwartz’s Inequality4

(∆x)2 (∆k)2 =

∫
|xf(x)|2 dx

∫
|f ′(x)|2 dx

≥
∣∣∣∣
∫

[xf(x)]∗f ′(x) dx

∣∣∣∣
2

≥
∣∣∣∣ℜ

∫
[xf(x)]∗f ′(x) dx

∣∣∣∣
2

. (1.55)

Since ℜ(f ∗f ′) = (ℜf)(ℜf ′) + (ℑf)(ℑf ′) = d/dx|f |2/2 we find5

ℜ
∫
xf ∗f ′ dx =

1

2

∫
x
d

dx
|f |2dx . (1.56)

3These are of course just the expectation values of (x− x0)
2 and (k − k0)

2.
4For suitable functions f , g : Rn → C Schwartz’s Inequality states |

∫
f∗g dnr|2 ≤ (

∫
|f |2 dnr)(

∫
|g|2 dnr).

5We use the fraktur letters ℜ and ℑ to denote real and imaginary part of a complex number.
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This leads us to the conclusion

(∆x)2 (∆k)2 ≥
∣∣∣∣
1

2

∫
x
d

dx
|f |2dx

∣∣∣∣
2

≥ 1

4

∣∣∣∣
∫

|f(x)|2dx
∣∣∣∣
2

=
1

4
(1.57)

where the second to last step is by partial integration.
� This generalized version of the uncertainty principle contains the previous case of wave packets
(where x0 and k0 are peaks of the distributions in coordinate and momentum space, resp., and
∆x and ∆k the widths around those) as a special case. We will rederive Heisenberg’s Principle in
a much more abstract setting later on.

� The Gauss function e−
x2

4σ2 is an example for which the uncertainty is minimal, i.e. ∆x∆k =
1/2. In other words Gaussian wave packets have the smallest possible uncertainty. Proof: HW I.
� We can rewrite the uncertainty principle in terms of momentum instead of the wave number.
It reads

∆x∆p ≥ ~

2
. (1.58)

� The generalization of the Fourier analysis to more than one dimension is straightforward. In
particular, for the uncertainty principle we have

∆x∆px ≥ ~

2
, ∆y∆py ≥

~

2
, etc. (1.59)

1.4.3 Time Dependence of Wave Packets

� We now drop the requirement of a fixed time and look again at the general wave packet (1.46).

Let us again assume that in momentum space φ(~k) is centered around a wave vector ~k0 and let
~k = ~k0 + ~u. We can use a Taylor expansion for the frequency

ω(~k) = ω(~k0) +
3∑

i=1

∂ω

∂ki

∣∣∣∣
~k0

ui +
1

2

3∑

i,j=1

∂2ω

∂ki∂kj

∣∣∣∣
~k0

uiuj + . . . . (1.60)

For free particles we had postulated ω = ~k2/(2m) and in that case the series terminates after
the 2nd order.
� Using the Taylor expansion up to second order we can rewrite the wave packet (1.46) as

ψ(~r, t) =
1

(2π)3/2
e
i~k0·

(

~r−
ω(~k0)
k0

k̂0t

) ∫
φ(~u)ei~u·(~r−∇~k

ω(~k0)t)ei
1
2

∑

i,j uiuj∇
i
~k
∇

j
~k
ω(~k0)tdu (1.61)

We use the symbolˆsometimes to denote unit vectors. This form is quite intuitive. We see that
the wave packet is a product of “carrier” wave with wave vector ~k0 and a phase velocity

vph =
ω(~k0)

k0
(1.62)

in the direction of ~k0, and an “envelope” given by the integral. The wave packet envelope is
propagating with a group velocity

~vgr = ∇~kω(
~k0) , (1.63)
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given by the first term in the integrand, with a correction given by the term with two gradients
of ω.
� If a wave packet is to describe localized particles we must identify the group velocity with the
particle velocity ~v, i.e.

∇~kω = ~v =
~p

m
=

~

m
~k . (1.64)

This is a differential equation for ω which has the solution ω = ~k2/(2m) plus a constant of
integration which we set equal to zero. Thus we find that the postulate of identifying the group
velocity of the wave packet with the particle velocity results in the same dispersion relation that
we found earlier.
� Using this dispersion relation for free particles we can easily calculate the double gradients in
the correction term and find as the final expression for a wave packet of free particles

ψ(~r, t) =
1

(2π)3/2
ei
~k0·(~r−~vpht)

∫
φ(~u)ei~u·(~r−~vgrt)ei

1
2

~

m
u2tdu . (1.65)

We can summarize the connection between wave and particle properties as

~vph =
ω(k0)

k0
k̂0 =

E

p
p̂ ,

~vgr = ∇~kω(
~k0) =

~p

m
.

(1.66)

(1.67)

where E and ~p are particle energy and momentum.
� The correction term is ∼ 1 as long as u2|t|~/(2m) ≪ 1. That is for small times |t| ≪
2m/[~(∆k)2] the wave packet propagates undisturbed. For large times the correction term is an
oscillating phase and the wave packet starts to change shape. Further investigation will reveal
that the wave packet is spreading for t→ ±∞. The example of spreading Gaussian wave packets
will be treated as a HW problem.
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