
Physics 606 (Quantum Mechanics I) — Spring 2015

Midterm Exam
Instructor: Rainer J. Fries

[1] The Angular Momentum Operator (20 points)

Consider a particle of mass m subject to a potential energy V (~r).

(a) (6) Calculate the commutator [~L, T ] of the angular momentum operator ~L = ~r× ~p with

the kinetic energy operator T = p2/2m for a Schrödinger field of massm in coordinate

space representation.

(b) (6) Repeat this calculation with the same operators in momentum space representation.

(c) (8) Show that the expectation value of the angular momentum operator of a given wave

function obeys the equation of motion

d

dt
〈L〉 =

〈

~r × ~F
〉

(1)

where the force is ~F = −∇V (~r).

[2] Complex Potential (20 points)

Sometimes it is useful to allow the potential energy in the time-dependent Schrödinger equa-

tion to be complex, i.e. V (~r) = V ′(~r)− iV ′′(~r) where both V ′ and V ′′ are real.

(a) (17) Using the usual ansatz ψ(~r, t) = A(~r, t)e
i

~
S(~r,t) in the Schrödinger equation with

real-valued amplitudeA and phase S derive the modified Hamilton-Jacobi equation and

continutity equation for S and the particle density ρ = A2 in the limit ~ → 0 in this

case.

(b) (3) Discuss the differences compared to the known case of a purely real potential (V ′′ =
0). How can the additional terms involving V ′′ be interpreted?

[3] Infinite Square Well with Source (20 points)

This problem can be solved independently of problem [2].

Consider an infinite square well potential in 1 dimension with length L between x = 0 and

x = L. The sqare well is given by the real part of the potential V (x). In addition, inside

the square well a constant imaginary part of the potential, iVs (Vs ∈ R), is acting on the

particles. Hence the total potential is

V (x) = iVs for 0 ≤ x ≤ L and V (x) = ∞ (and zero imag. part) elsewhere (2)

(a) (10) First consider the simple case of Vs = 0 (the potential is real). Write down all

energy eigenvalues En and (properly normalized) eigenstates ψn in this case.
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(b) (10) Now consider the general case of non-zero Vs. At t = 0 the system is prepared

in a state that is the same as the ground state of problem (a), i.e. ψ(x, 0) = ψ0(x).
Find the time dependent wave function of the problem by using a separation ansatz

ψ(x, t) = N(t)ψ0(x).

[4] Superposition of Two States (25 points)

Consider a system with a discrete energy spectrumEn, n = 1, 2, . . .. Each energy eigenvalue

has degeneracy 1 and the corresponding eigenstates ψn of the Hamilton operator H are

properly normalized to unity. The system is prepared to be in a superposition (of equal

weight) of the ground state and the first excited state at t = 0:

ψ(x, 0) = C (ψ1 + ψ2) (3)

(a) (5) Write down the time-dependent wave function ψ(x, t) and determine the normaliza-

tion constant C so that ψ(x, t) is properly normalized to unity.

(b) (10) Calculate the expectation value of the Hamilton operator (i.e. the average energy)

〈E〉.

(c) (10) Calculate the variance of the energy around its average value, ∆E = 〈(E − 〈E〉)2〉1/2

[5] Lower Energy Bound (15 points)

Consider a particle of mass m with a potential energy V (~r) which is bound from below,

i.e. there is a value V0 with V (~r) ≥ V0 everywhere. Let E and ψ be an eigenvalue and

corresponding eigenfunction to the Hamilton operator, i.e.

Tψ + V ψ = Eψ (4)

where T is the usual kinetic energy operator. Show explicitly that always E > V0.
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Useful Formulae

• δ-function
1

2π

∫

R

eik(x−x0)dk = δ(x− x0) (5)

• Hamilton-Jacobi for the classical action S(~r, ~p, t)

∂S

∂t
+H(~r, ~p) = 0 with pi =

∂S

∂ri
(6)

• Current of the Schrödinger field

~j(~r, t) =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (7)

• Jacobi identity

[F, [G,H ]] + [H, [F,G]] + [G, [H,F ]] = 0 (8)

• Baker Campbell Hausdorff (if A, B commute with their commutator!)

eAeB = eA+B+[A,B]/2 (9)

• Virial theorem for stationary states

2〈T 〉 = 〈~r · ∇V 〉 (10)

• Closure/completeness for continuous spectrum with eigenstates ψα

∫

spec

ψ∗

α(~r
′)ψα(~r)dα = δ(3)(~r′ − ~r) (11)

• Generator of Galilei boosts
~K = m~r − ~pt (12)

• Hermite polynomials

d2

dξ2
Hn(ξ)− 2ξ

d

dξ
Hn(ξ) + 2nHn(ξ) = 0 (13)

d

dξ
Hn(ξ) = 2nHn−1(ξ) (14)

F (ξ, s) =
∑

n∈N

Hn(ξ)
sn

n!
= eξ

2
−(s−ξ)2 (15)

• Harmonic oscillator: orthonormal energy eigenstates

ψn(x) = 2−
n

2 n!−
1

2

(mω

~π

)
1

4

Hn

(
√

mω

~
x

)

e−
mω

2~
x2

(16)
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