Physics 606 (Quantum Mechanics I) - Spring 2015

Midterm Exam

Instructor: Rainer J. Fries

[1] The Angular Momentum Operator (20 points)
Consider a particle of mass m subject to a potential energy $V(\vec{r})$.
(a) (6) Calculate the commutator $[\vec{L}, T]$ of the angular momentum operator $\vec{L}=\vec{r} \times \vec{p}$ with the kinetic energy operator $T=p^{2} / 2 m$ for a Schrödinger field of mass m in coordinate space representation.
(b) (6) Repeat this calculation with the same operators in momentum space representation.
(c) (8) Show that the expectation value of the angular momentum operator of a given wave function obeys the equation of motion

$$
\begin{equation*}
\frac{d}{d t}\langle L\rangle=\langle\vec{r} \times \vec{F}\rangle \tag{1}
\end{equation*}
$$

where the force is $\vec{F}=-\nabla V(\vec{r})$.
[2] Complex Potential (20 points)
Sometimes it is useful to allow the potential energy in the time-dependent Schrödinger equation to be complex, i.e. $V(\vec{r})=V^{\prime}(\vec{r})-i V^{\prime \prime}(\vec{r})$ where both V^{\prime} and $V^{\prime \prime}$ are real.
(a) (17) Using the usual ansatz $\psi(\vec{r}, t)=A(\vec{r}, t) e^{\frac{i}{\hbar} S(\vec{r}, t)}$ in the Schrödinger equation with real-valued amplitude A and phase S derive the modified Hamilton-Jacobi equation and continutity equation for S and the particle density $\rho=A^{2}$ in the limit $\hbar \rightarrow 0$ in this case.
(b) (3) Discuss the differences compared to the known case of a purely real potential ($V^{\prime \prime}=$ 0). How can the additional terms involving $V^{\prime \prime}$ be interpreted?
[3] Infinite Square Well with Source (20 points)
This problem can be solved independently of problem [2].
Consider an infinite square well potential in 1 dimension with length L between $x=0$ and $x=L$. The sqare well is given by the real part of the potential $V(x)$. In addition, inside the square well a constant imaginary part of the potential, $i V_{s}\left(V_{s} \in \mathbb{R}\right)$, is acting on the particles. Hence the total potential is

$$
\begin{equation*}
V(x)=i V_{s} \text { for } 0 \leq x \leq L \quad \text { and } \quad V(x)=\infty \text { (and zero imag. part) elsewhere } \tag{2}
\end{equation*}
$$

(a) (10) First consider the simple case of $V_{s}=0$ (the potential is real). Write down all energy eigenvalues E_{n} and (properly normalized) eigenstates ψ_{n} in this case.
(b) (10) Now consider the general case of non-zero V_{s}. At $t=0$ the system is prepared in a state that is the same as the ground state of problem (a), i.e. $\psi(x, 0)=\psi_{0}(x)$. Find the time dependent wave function of the problem by using a separation ansatz $\psi(x, t)=N(t) \psi_{0}(x)$.
[4] Superposition of Two States (25 points)
Consider a system with a discrete energy spectrum $E_{n}, n=1,2, \ldots$. Each energy eigenvalue has degeneracy 1 and the corresponding eigenstates ψ_{n} of the Hamilton operator H are properly normalized to unity. The system is prepared to be in a superposition (of equal weight) of the ground state and the first excited state at $t=0$:

$$
\begin{equation*}
\psi(x, 0)=C\left(\psi_{1}+\psi_{2}\right) \tag{3}
\end{equation*}
$$

(a) (5) Write down the time-dependent wave function $\psi(x, t)$ and determine the normalization constant C so that $\psi(x, t)$ is properly normalized to unity.
(b) (10) Calculate the expectation value of the Hamilton operator (i.e. the average energy) $\langle E\rangle$.
(c) (10) Calculate the variance of the energy around its average value, $\Delta E=\left\langle(E-\langle E\rangle)^{2}\right\rangle^{1 / 2}$
[5] Lower Energy Bound (15 points)
Consider a particle of mass m with a potential energy $V(\vec{r})$ which is bound from below, i.e. there is a value V_{0} with $V(\vec{r}) \geq V_{0}$ everywhere. Let E and ψ be an eigenvalue and corresponding eigenfunction to the Hamilton operator, i.e.

$$
\begin{equation*}
T \psi+V \psi=E \psi \tag{4}
\end{equation*}
$$

where T is the usual kinetic energy operator. Show explicitly that always $E>V_{0}$.

Useful Formulae

- δ-function

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i k\left(x-x_{0}\right)} d k=\delta\left(x-x_{0}\right) \tag{5}
\end{equation*}
$$

- Hamilton-Jacobi for the classical action $S(\vec{r}, \vec{p}, t)$

$$
\begin{equation*}
\frac{\partial S}{\partial t}+H(\vec{r}, \vec{p})=0 \quad \text { with } p_{i}=\frac{\partial S}{\partial r_{i}} \tag{6}
\end{equation*}
$$

- Current of the Schrödinger field

$$
\begin{equation*}
\vec{j}(\vec{r}, t)=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{7}
\end{equation*}
$$

- Jacobi identity

$$
\begin{equation*}
[F,[G, H]]+[H,[F, G]]+[G,[H, F]]=0 \tag{8}
\end{equation*}
$$

- Baker Campbell Hausdorff (if A, B commute with their commutator!)

$$
\begin{equation*}
e^{A} e^{B}=e^{A+B+[A, B] / 2} \tag{9}
\end{equation*}
$$

- Virial theorem for stationary states

$$
\begin{equation*}
2\langle T\rangle=\langle\vec{r} \cdot \nabla V\rangle \tag{10}
\end{equation*}
$$

- Closure/completeness for continuous spectrum with eigenstates ψ_{α}

$$
\begin{equation*}
\int_{\text {spec }} \psi_{\alpha}^{*}\left(\vec{r}^{\prime}\right) \psi_{\alpha}(\vec{r}) d \alpha=\delta^{(3)}\left(\vec{r}^{\prime}-\vec{r}\right) \tag{11}
\end{equation*}
$$

- Generator of Galilei boosts

$$
\begin{equation*}
\vec{K}=m \vec{r}-\vec{p} t \tag{12}
\end{equation*}
$$

- Hermite polynomials

$$
\begin{gather*}
\frac{d^{2}}{d \xi^{2}} H_{n}(\xi)-2 \xi \frac{d}{d \xi} H_{n}(\xi)+2 n H_{n}(\xi)=0 \tag{13}\\
\frac{d}{d \xi} H_{n}(\xi)=2 n H_{n-1}(\xi) \tag{14}\\
F(\xi, s)=\sum_{n \in \mathbb{N}} H_{n}(\xi) \frac{s^{n}}{n!}=e^{\xi^{2}-(s-\xi)^{2}} \tag{15}
\end{gather*}
$$

- Harmonic oscillator: orthonormal energy eigenstates

$$
\begin{equation*}
\psi_{n}(x)=2^{-\frac{n}{2}} n!^{-\frac{1}{2}}\left(\frac{m \omega}{\hbar \pi}\right)^{\frac{1}{4}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) e^{-\frac{m \omega}{2 \hbar} x^{2}} \tag{16}
\end{equation*}
$$

