Physics 606 — Spring 2015

Homework 9
Instructor: Rainer J. Fries Turn in your work by April 21

[1] Legendre Polynomials and Legendre Functions (40 points)

Consider the differential equation
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for a function P(¢), —1 < £ < 1, with parameters m € N and A € R. Itis called Legendre’s
differential equation.

(a) Consider the special case m = 0. Make a power series ansatz for the solution, P(§) =
>_o2,a;&’. From the differential equation derive a recursion relation between coeffi-
cients a; and a;;2. Show that the power series diverges at the endpoints § = £1 unless
A =1[(l + 1) where [ € N is a non-negative integer.

(b) The outcome of (a) suggests that the only physically acceptable, non-singular solutions
to Legendre’s equation for m = 0 are polynomials and they can be labeled by a quantum
number [ with A = [(l + 1). Show that these Legendre polynomials are given by
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(The normalization is simply a convention.) What is the degree of F;?
(c) Write down the first four Legendre polynomials (I = 0, 1, 2, 3) explicitly.

(d) Show that Legendre polynomials are mutually orthogonal with respect to a scalar prod-
uct defined as integration over the interval [—1, 1], and their norm is \/2/(2] + 1), i.e.
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(e) Now we return to the general case of Legendre’s differential equation. Show that for

m < [ the functions o
P = (1-8)% 3 A “)

are solutions to (1) . They are called associated Legendre functions of the first kind.




[2] Angular Momentum Operators (40 points)

(a) Show the following commutation relations for the angular momentum operator L =7x
p: () [Lj, L] = €mihLly, g, k,1 = 1,2,3 where € is the usual anti-symmetruc Levi-
Civita tensor with €193 = 1; (ii) [L;, L?| = 0 for j = 1,2,3 where L? = L2 + L2 + L2.

(b) Derive the nabla operator V and the Laplace operator /A in spherical coordinates r, 6, ¢.

(c) Give explicit expressions of the operators L,, L, and L., in coordinate space represen-
ations in spherical coordinates and show that in particular

s L[ 1 ® 1 9(. 0
L7==h sin290¢2+sin989 sin 0 ' )

(d) Since L, and L? are commuting operators we can find common eigenfunctions. Solve
the two eigenvalue equations'

L.Y(0,¢) = mhY (0,9), (6)
L*Y (0, 6) = AR*Y (0, ¢) (7)

by choosing a separation ansatz Y (0, ¢) = ®(¢)O(#). The functions Y (6, ¢) in proper
normalization (discussed later) are called spherical harmonics.

Hint: First solve for ®(¢) (what are the allowed values for m?) and then show that the
equation for © reduces to Legendre’s differential equation from problem [1].

[3] Ground State Splitting for the Double Harmonic Osciallator (20 points)

Consider a particle of mass m in a double harmonic oscillator potential V() = tmw?(|z| —

a)? where a is the parameter determining the separation of the two harmonic oscillator min-
ima.

(a) We choose trial functions

Yy = N [n(z — a) £ ¥, (z + a)] )

as discussed in section IV.4, where the v, are the usual harmonic oscillator eigenfunc-
tions. Calculate the values of the functional (H)[¢)%] for the case n = 0. As you know
they are approximations to the energies of the true ground state and first excited state.

(b) In the asymptotic limit a — oo the integrals you obtained in (a) should evaluate to
simple expressions. Show that the leading terms in this limit are

(Y] = sho T %e‘ag ©)

in terms of the dimensionless parameter o = /mw/hx. Thus which trial function, )¢
or 9, is the approximation for the ground state?

't is customary to write powers of % explicitly in this eigenvalue problem.
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