
Physics 606 — Spring 2015

Homework 9
Instructor: Rainer J. Fries Turn in your work by April 21

[1] Legendre Polynomials and Legendre Functions (40 points)

Consider the differential equation

d

dξ

(

(1− ξ2)
dP

dξ

)

− m2

1− ξ2
P + λP = 0 (1)

for a function P (ξ), −1 < ξ < 1, with parameters m ∈ N and λ ∈ R. It is called Legendre’s

differential equation.

(a) Consider the special case m = 0. Make a power series ansatz for the solution, P (ξ) =
∑

∞

j=1
ajξ

j . From the differential equation derive a recursion relation between coeffi-

cients aj and aj+2. Show that the power series diverges at the endpoints ξ = ±1 unless

λ = l(l + 1) where l ∈ N is a non-negative integer.

(b) The outcome of (a) suggests that the only physically acceptable, non-singular solutions

to Legendre’s equation form = 0 are polynomials and they can be labeled by a quantum

number l with λ = l(l + 1). Show that these Legendre polynomials are given by

Pl(ξ) =
1

2ll!

dl

dξl
(ξ2 − 1)l . (2)

(The normalization is simply a convention.) What is the degree of Pl?

(c) Write down the first four Legendre polynomials (l = 0, 1, 2, 3) explicitly.

(d) Show that Legendre polynomials are mutually orthogonal with respect to a scalar prod-

uct defined as integration over the interval [−1, 1], and their norm is
√

2/(2l + 1), i.e.

∫

1

−1

Pl(ξ)Pl′(ξ)dξ =
2

2l + 1
δll′ . (3)

(e) Now we return to the general case of Legendre’s differential equation. Show that for

m ≤ l the functions

Pm
l (ξ) = (1− ξ2)

m

2

dm

dξm
Pl(ξ) (4)

are solutions to (1) . They are called associated Legendre functions of the first kind.
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[2] Angular Momentum Operators (40 points)

(a) Show the following commutation relations for the angular momentum operator ~L = ~r×
~p: (i) [Lj , Lk] = ǫjkli~Ll, j, k, l = 1, 2, 3 where ǫjkl is the usual anti-symmetruc Levi-

Civita tensor with ǫ123 = 1; (ii) [Lj , L
2] = 0 for j = 1, 2, 3 where L2 = L2

1 + L2
2 + L2

3.

(b) Derive the nabla operator ∇ and the Laplace operator △ in spherical coordinates r, θ, φ.

(c) Give explicit expressions of the operators Lx, Ly and Lz, in coordinate space represen-

ations in spherical coordinates and show that in particular

L2 = −~
2

[

1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)]

. (5)

(d) Since Lz and L2 are commuting operators we can find common eigenfunctions. Solve

the two eigenvalue equations1

LzY (θ, φ) = m~Y (θ, φ) , (6)

L2Y (θ, φ) = λ~2Y (θ, φ) (7)

by choosing a separation ansatz Y (θ, φ) = Φ(φ)Θ(θ). The functions Y (θ, φ) in proper

normalization (discussed later) are called spherical harmonics.

Hint: First solve for Φ(φ) (what are the allowed values for m?) and then show that the

equation for Θ reduces to Legendre’s differential equation from problem [1].

[3] Ground State Splitting for the Double Harmonic Osciallator (20 points)

Consider a particle of mass m in a double harmonic oscillator potential V (x) = 1

2
mω2(|x|−

a)2 where a is the parameter determining the separation of the two harmonic oscillator min-

ima.

(a) We choose trial functions

ψn
±
= Nn

±
[ψn(x− a)± ψn(x+ a)] (8)

as discussed in section IV.4, where the ψn are the usual harmonic oscillator eigenfunc-

tions. Calculate the values of the functional 〈H〉[ψ0
±
] for the case n = 0. As you know

they are approximations to the energies of the true ground state and first excited state.

(b) In the asymptotic limit a → ∞ the integrals you obtained in (a) should evaluate to

simple expressions. Show that the leading terms in this limit are

〈H〉[ψ0

±
] =

1

2
~ω ∓ α√

π
e−α2

(9)

in terms of the dimensionless parameter α =
√

mω/~x. Thus which trial function, ψ0
+

or ψ0
−

, is the approximation for the ground state?

1It is customary to write powers of ~ explicitly in this eigenvalue problem.
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