Physics 606 — Spring 2015

Homework 7
Instructor: Rainer J. Fries Turn in your work by April 7

[1] Equation of Motion for the Wigner Distribution (30 points)

(a) Show that the Wigner distribution W (7, 7, t) of a quantum system of free particles of
mass m obey the following equation
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(b) Now consider the special case of particles of mass m with Hamilton function H (p, x) =
p?/2m + V(z) in 1 dimension. Show that in that case
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where the Moyal bracket of two functions f, g on phase space is defined as
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As usual the arrows over partial derivatives denote the direction in which the derivative
is acting and the sin-function is defined through its power series.

(c) In the situation of (b) consider the limit 2 — 0. Using the result of (b) write down the
classical equation of motion and its first quantum correction (next term in powers of h).

[2] Scattering off a 1-D Square Potential (25 points)

(a) Consider a potential barrier of height [, and width 2a as introduced in II1.2.2 in class.
Discuss energy eigenstates with energy above the barrier height, i.e. £ > Vj,. What is
the general form of the energy eigenfunctions? Derive the M -matrix from the matching
conditions and discuss the transmission and reflection coefficients 7" and R.

(b) Repeat the discussion for a potential well of depth —V}; and width 2a as in IIL.3 in class.
Discuss unbound energy eigenstates, i.e. £/ > 0. What is the general form of the energy
eigenfunctions? Derive the M -matrix from the matching conditions and discuss the
transmission and reflection coefficients 7" and R.

Hint: Find similarities between the situations in (a) and (b).

[3] Half Oscillator (20 points)

Consider a particle of mass m with potential energy
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i.e. a “halved” harmonic oscillator. Find the energy eigenvalues and properly normalized
eigenfunctions for this particle.



[4] Hamilton’s Principle for Fields (25 points)

Consider a field () as a function of coordinates z = (z;)Y,. Let L(2, %, x) be the
J
Lagrange density for 1), depending on 1), its first derivatives, and the position vector z. Let
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be the action defined as an integral of the Lagrange density over a region I in R, In the
following we only consider fields v that take fixed values on the boundary of I', denoted as
OT. Show that the following two statements are equivalent:!

(i) ¥(z) is an extremum of the functional S, i.e. small variations ¢ (z) around v (z) con-
sistent with the boundary conditions leave S invariant: 4.5 = 0.

(i1) v satiesfies the Euler-Lagrange field equation
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Hint: You can parameterize small deviations from 1(z) as (z, o) = () + an(z) where
a is a “small” parameter and n(x) is a test function which has to vanish on OI'. Then 6S =
(0S/0a)dc; OR take your favorite classical mechanics textbook, look up the derivation of
the Euler-Lagrange equations from the Hamilton Principle when 1) is only a function of one
parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional
parameter space.

!This statement can be easily generalized to a Lagrange density involving several fields 1; (z), as for example required for the
complex Schrodinger field.



