Physics 606 — **Spring 2015**

Homework 7

Instructor: Rainer J. Fries

Turn in your work by April 7

[1] **Equation of Motion for the Wigner Distribution** (30 points)

(a) Show that the Wigner distribution $W(\vec{r}, \vec{p}, t)$ of a quantum system of free particles of mass m obey the following equation

$$\frac{\partial W}{\partial t} + \frac{1}{m} \vec{p} \cdot \nabla_{\vec{r}} W = 0.$$
 (1)

(b) Now consider the special case of particles of mass m with Hamilton function $H(p,x) = p^2/2m + V(x)$ in 1 dimension. Show that in that case

$$\frac{\partial W}{\partial t} = -\{\{W, H\}\} \tag{2}$$

where the *Moyal bracket* of two functions f, g on phase space is defined as

$$\left\{\left\{f,g\right\}\right\} = \frac{2}{\hbar}f(x,p)\sin\left(\frac{\hbar}{2}\left(\overleftarrow{\partial}_{x}\overrightarrow{\partial}_{p} - \overleftarrow{\partial}_{p}\overrightarrow{\partial}_{x}\right)\right)g(x,p). \tag{3}$$

As usual the arrows over partial derivatives denote the direction in which the derivative is acting and the sin-function is defined through its power series.

(c) In the situation of (b) consider the limit $\hbar \to 0$. Using the result of (b) write down the classical equation of motion and its first quantum correction (next term in powers of \hbar).

[2] Scattering off a 1-D Square Potential (25 points)

- (a) Consider a potential barrier of height V_0 and width 2a as introduced in III.2.2 in class. Discuss energy eigenstates with energy above the barrier height, i.e. $E > V_0$. What is the general form of the energy eigenfunctions? Derive the M-matrix from the matching conditions and discuss the transmission and reflection coefficients T and R.
- (b) Repeat the discussion for a potential well of depth $-V_0$ and width 2a as in III.3 in class. Discuss unbound energy eigenstates, i.e. E>0. What is the general form of the energy eigenfunctions? Derive the M-matrix from the matching conditions and discuss the transmission and reflection coefficients T and R.

Hint: Find similarities between the situations in (a) and (b).

[3] **Half Oscillator** (20 points)

Consider a particle of mass m with potential energy

$$V(x) = \begin{cases} \infty & \text{for } x < 0\\ \frac{1}{2}m\omega^2 x^2 & \text{for } x > 0 \end{cases}$$
 (4)

i.e. a "halved" harmonic oscillator. Find the energy eigenvalues and properly normalized eigenfunctions for this particle.

[4] Hamilton's Principle for Fields (25 points)

Consider a field $\psi(x)$ as a function of coordinates $x=(x_i)_{i=1}^N$. Let $\mathcal{L}(\psi,\frac{\partial \psi}{\partial x_j},x)$ be the Lagrange density for ψ , depending on ψ , its first derivatives, and the position vector x. Let

$$S[\psi] = \int_{\Gamma} \mathcal{L}\left(\psi, \frac{\partial \psi}{\partial x_j}, x\right) dx^N \tag{5}$$

be the action defined as an integral of the Lagrange density over a region Γ in \mathbb{R}^N . In the following we only consider fields ψ that take fixed values on the boundary of Γ , denoted as $\partial\Gamma$. Show that the following two statements are equivalent:

- (i) $\psi(x)$ is an extremum of the functional S, i.e. small variations $\delta\psi(x)$ around $\psi(x)$ consistent with the boundary conditions leave S invariant: $\delta S=0$.
- (ii) ψ satisfies the Euler-Lagrange field equation

$$\frac{\partial \mathcal{L}}{\partial \psi} - \frac{\partial}{\partial x_j} \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi}{\partial x_j}\right)} = 0.$$
 (6)

Hint: You can parameterize small deviations from $\psi(x)$ as $\psi(x,\alpha) = \psi(x) + \alpha \eta(x)$ where α is a "small" parameter and $\eta(x)$ is a test function which has to vanish on $\partial \Gamma$. Then $\delta S = (\partial S/\partial \alpha)\delta \alpha$; OR take your favorite classical mechanics textbook, look up the derivation of the Euler-Lagrange equations from the Hamilton Principle when ψ is only a function of one parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional parameter space.

¹This statement can be easily generalized to a Lagrange density involving several fields $\psi_i(x)$, as for example required for the complex Schrödinger field.