
Physics 606 — Spring 2015

Homework 7
Instructor: Rainer J. Fries Turn in your work by April 7

[1] Equation of Motion for the Wigner Distribution (30 points)

(a) Show that the Wigner distribution W (~r, ~p, t) of a quantum system of free particles of

mass m obey the following equation

∂W

∂t
+

1

m
~p · ∇~rW = 0 . (1)

(b) Now consider the special case of particles of massm with Hamilton functionH(p, x) =
p2/2m+ V (x) in 1 dimension. Show that in that case

∂W

∂t
= −

{{

W,H
}}

(2)

where the Moyal bracket of two functions f , g on phase space is defined as

{{

f, g
}}

=
2

~
f(x, p) sin

(

~

2

(

←−
∂ x

−→
∂ p −

←−
∂ p

−→
∂ x

)

)

g(x, p) . (3)

As usual the arrows over partial derivatives denote the direction in which the derivative

is acting and the sin-function is defined through its power series.

(c) In the situation of (b) consider the limit ~ → 0. Using the result of (b) write down the

classical equation of motion and its first quantum correction (next term in powers of ~).

[2] Scattering off a 1-D Square Potential (25 points)

(a) Consider a potential barrier of height V0 and width 2a as introduced in III.2.2 in class.

Discuss energy eigenstates with energy above the barrier height, i.e. E > V0. What is

the general form of the energy eigenfunctions? Derive theM-matrix from the matching

conditions and discuss the transmission and reflection coefficients T and R.

(b) Repeat the discussion for a potential well of depth−V0 and width 2a as in III.3 in class.

Discuss unbound energy eigenstates, i.e. E > 0. What is the general form of the energy

eigenfunctions? Derive the M-matrix from the matching conditions and discuss the

transmission and reflection coefficients T and R.

Hint: Find similarities between the situations in (a) and (b).

[3] Half Oscillator (20 points)

Consider a particle of mass m with potential energy

V (x) =

{

∞ for x < 0
1

2
mω2x2 for x > 0

(4)

i.e. a “halved” harmonic oscillator. Find the energy eigenvalues and properly normalized

eigenfunctions for this particle.

1



[4] Hamilton’s Principle for Fields (25 points)

Consider a field ψ(x) as a function of coordinates x = (xi)
N
i=1

. Let L(ψ, ∂ψ
∂xj
, x) be the

Lagrange density for ψ, depending on ψ, its first derivatives, and the position vector x. Let

S[ψ] =

∫

Γ

L

(

ψ,
∂ψ

∂xj
, x

)

dxN (5)

be the action defined as an integral of the Lagrange density over a region Γ in R
N . In the

following we only consider fields ψ that take fixed values on the boundary of Γ, denoted as

∂Γ. Show that the following two statements are equivalent:1

(i) ψ(x) is an extremum of the functional S, i.e. small variations δψ(x) around ψ(x) con-

sistent with the boundary conditions leave S invariant: δS = 0.

(ii) ψ satiesfies the Euler-Lagrange field equation

∂L

∂ψ
−

∂

∂xj

∂L

∂
(

∂ψ

∂xj

) = 0. (6)

Hint: You can parameterize small deviations from ψ(x) as ψ(x, α) = ψ(x) + αη(x) where

α is a “small” parameter and η(x) is a test function which has to vanish on ∂Γ. Then δS =
(∂S/∂α)δα; OR take your favorite classical mechanics textbook, look up the derivation of

the Euler-Lagrange equations from the Hamilton Principle when ψ is only a function of one

parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional

parameter space.

1This statement can be easily generalized to a Lagrange density involving several fields ψi(x), as for example required for the

complex Schrödinger field.
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