
Physics 606 — Spring 2015

Homework 5
Instructor: Rainer J. Fries Turn in your work by March 10

[1] Free Particles as a Limit of a Large Potential Well (30 points)

Consider an infinitely deep potential well of size L with V (~r) = 0 for −L/2 ≤ ri ≤ L/2
for i = 1, 2, 3, V (~r) → ∞ elsewhere. Unlike in I.11.4 we now consider solutions of the

Schrödinger equation for a particle of mass m in the potential V (~r) with periodic boundary

conditions (i.e. for opposite boundary points the value of ψ and all of its derivatives coin-

cide).

The potential well with periodic boundary conditions and size L → ∞ is a useful approxi-

mation of free particles.

(a) Find the wave functions (with proper normalizations) that are simultaneous eigenfunc-

tions for the three components of the momentum operator, px, py, pz, together with

their eigenvalues. Demonstrate that they are also energy eigenstates of the Hamilton

operator and give their energy eigenvalues. Show that for L → ∞ the eigenvalues and

eigenstates of free particles (albeit with different normalizations) are recovered.

(b) Introduce a quantum phase space density ρ by counting the number of eigenstates in a

phase space volume Vp = L3∆px∆py∆pz and dividing by Vp. What is the value of ρ?

Thus what is the average phase space volume occupied by an individual eigenstate?

This is an important result for statistical quantum mechanics.

(c) Introduce a density σ = ∆N/∆E of eigenstates in the energy spectrum by counting

the number of states ∆N in an energy interval ∆E. Calculate σ as a function of energy

E for large E.

[2] Translationally Invariant Systems (25 points)

(a) Consider the unitary operator

Ua = e−
i

~
pa (1)

for translations by a in one dimension where p is the momentum operator. Show that its

eigenvalues cover the complete unit circle in C, and that they can be parameterized by

e−
i

~
Ka where the K are eigenvalues to the momentum operator p, restricted to − h

2a
≤

K ≤ h
2a

. What are the corresponding eigenfunctions? What is the degeneracy of each

eigenvalue? Is it countable?

This range for K is called the first Brillouin zone.

(b) Show that the space of eigenfunctions of Ua for a fixed eigenvalue (given by the mo-

mentum eigenvalue K as above) can be written in the form

ψK(x) = e
i

~
Kxu(x) (2)

where u is a square-integrable, periodic function with period a, ı.e. u(x+ a) = u(x).
Eigenfunctions of the form (2) are called Bloch functions. They play an important role

in crystals and other periodic lattices.
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[3] Galilei Boosts (25 points)

(a) Recall that a Galilei boost with velocity ~w acts on a wave function as

ψ(~r, t) 7→ e
i

~
(m~w·~r− 1

2
mw2t)ψ(~r − ~wt, t) . (3)

Show that boosts in x-, y- and z-direction can be represented by unitary operators

Dwi
= e

i

~
Kiwi (4)

i = 1, 2, 3, with Hermitian generators

Ki = mri − pit . (5)

Here ~r and ~p are the position and momentum operators for a particle of mass m and t
is time.

Hint: Baker-Campbell-Hausdorff

(b) For a system with potential energy V = 0 compute the commutators of the boost gen-

erators Ki with the other generators of the Galilei group discussed so far:

[Ki, Kj] , [Ki, pj] , [Ki, H ] (6)

for i, j = 1, 2, 3.

The set of generators with the commutators as a Lie product is called the Galilei alge-

bra.

(c) Let D~w1
, D~w2

be the unitary operators representing boosts by velocities ~w1, ~w2, respec-

tively, and let D~a represent a spatial translation by ~a. Show that D~w2
D~w1

= D~w2+~w1
,

i.e. the operators from (a) establish a true (non-projective) representation of boosts

alone as a subgroup of G+
+ . Now consider a spatial translation followed by a boost,

once as a produce of the individual operators D~w1
D~a, and once as the single opera-

tor D~w1⊕~a = e
i

~
(K·~w1−~p·~a) that represents it. From a comparison of the two conclude

whether the representation of the Galilei group discussed here is projective.

[4] Newton’s Second Law and Its Quantum Corrections (20 points)

Recall Ehrenfests Theorem for the expectation values of position and momentum of a par-

ticle. We discussed that it only recovers the classical equation of motion if 〈∇V (~r)〉 =
∇V (〈~r〉). Quantify this condition for a slowly varying potential energy function V (~r) by

deriving from Ehrenfest’s Theorem Newton’s Second Law for expectation values and the

leading quantum correction term to it, i.e. d〈~p〉/dt = −~F (〈~r〉) + first quantum correction.

Hint: Taylor expansion.
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