Physics 606 - Spring 2015

Homework 5

Instructor: Rainer J. Fries
Turn in your work by March 10
[1] Free Particles as a Limit of a Large Potential Well (30 points)
Consider an infinitely deep potential well of size L with $V(\vec{r})=0$ for $-L / 2 \leq r_{i} \leq L / 2$ for $i=1,2,3, V(\vec{r}) \rightarrow \infty$ elsewhere. Unlike in I.11.4 we now consider solutions of the Schrödinger equation for a particle of mass m in the potential $V(\vec{r})$ with periodic boundary conditions (i.e. for opposite boundary points the value of ψ and all of its derivatives coincide).
The potential well with periodic boundary conditions and size $L \rightarrow \infty$ is a useful approximation of free particles.
(a) Find the wave functions (with proper normalizations) that are simultaneous eigenfunctions for the three components of the momentum operator, p_{x}, p_{y}, p_{z}, together with their eigenvalues. Demonstrate that they are also energy eigenstates of the Hamilton operator and give their energy eigenvalues. Show that for $L \rightarrow \infty$ the eigenvalues and eigenstates of free particles (albeit with different normalizations) are recovered.
(b) Introduce a quantum phase space density ρ by counting the number of eigenstates in a phase space volume $V_{p}=L^{3} \Delta p_{x} \Delta p_{y} \Delta p_{z}$ and dividing by V_{p}. What is the value of ρ ? Thus what is the average phase space volume occupied by an individual eigenstate?
This is an important result for statistical quantum mechanics.
(c) Introduce a density $\sigma=\Delta N / \Delta E$ of eigenstates in the energy spectrum by counting the number of states ΔN in an energy interval ΔE. Calculate σ as a function of energy E for large E.

[2] Translationally Invariant Systems (25 points)

(a) Consider the unitary operator

$$
\begin{equation*}
U_{a}=e^{-\frac{i}{\hbar} p a} \tag{1}
\end{equation*}
$$

for translations by a in one dimension where p is the momentum operator. Show that its eigenvalues cover the complete unit circle in \mathbb{C}, and that they can be parameterized by $e^{-\frac{i}{\hbar} K a}$ where the K are eigenvalues to the momentum operator p, restricted to $-\frac{h}{2 a} \leq$ $K \leq \frac{h}{2 a}$. What are the corresponding eigenfunctions? What is the degeneracy of each eigenvalue? Is it countable?
This range for K is called the first Brillouin zone.
(b) Show that the space of eigenfunctions of U_{a} for a fixed eigenvalue (given by the momentum eigenvalue K as above) can be written in the form

$$
\begin{equation*}
\psi_{K}(x)=e^{\frac{i}{\hbar} K x} u(x) \tag{2}
\end{equation*}
$$

where u is a square-integrable, periodic function with period a, 1.e. $u(x+a)=u(x)$. Eigenfunctions of the form (2) are called Bloch functions. They play an important role in crystals and other periodic lattices.
[3] Galilei Boosts (25 points)
(a) Recall that a Galilei boost with velocity \vec{w} acts on a wave function as

$$
\begin{equation*}
\psi(\vec{r}, t) \mapsto e^{\frac{i}{\hbar}\left(m \vec{w} \cdot \vec{r}-\frac{1}{2} m w^{2} t\right)} \psi(\vec{r}-\vec{w} t, t) . \tag{3}
\end{equation*}
$$

Show that boosts in x-, y - and z-direction can be represented by unitary operators

$$
\begin{equation*}
D_{w_{i}}=e^{\frac{i}{\hbar} K_{i} w_{i}} \tag{4}
\end{equation*}
$$

$i=1,2,3$, with Hermitian generators

$$
\begin{equation*}
K_{i}=m r_{i}-p_{i} t \tag{5}
\end{equation*}
$$

Here \vec{r} and \vec{p} are the position and momentum operators for a particle of mass m and t is time.
Hint: Baker-Campbell-Hausdorff
(b) For a system with potential energy $V=0$ compute the commutators of the boost generators K_{i} with the other generators of the Galilei group discussed so far:

$$
\begin{equation*}
\left[K_{i}, K_{j}\right], \quad\left[K_{i}, p_{j}\right], \quad\left[K_{i}, H\right] \tag{6}
\end{equation*}
$$

for $i, j=1,2,3$.
The set of generators with the commutators as a Lie product is called the Galilei algebra.
(c) Let $D_{\vec{w}_{1}}, D_{\vec{w}_{2}}$ be the unitary operators representing boosts by velocities \vec{w}_{1}, \vec{w}_{2}, respectively, and let $D_{\vec{a}}$ represent a spatial translation by \vec{a}. Show that $D_{\vec{w}_{2}} D_{\vec{w}_{1}}=D_{\vec{w}_{2}+\vec{w}_{1}}$, i.e. the operators from (a) establish a true (non-projective) representation of boosts alone as a subgroup of \mathcal{G}_{+}^{+}. Now consider a spatial translation followed by a boost, once as a produce of the individual operators $D_{\vec{w}_{1}} D_{\vec{a}}$, and once as the single operator $D_{\vec{w}_{1} \oplus \vec{a}}=e^{\frac{i}{\hbar}\left(K \cdot \vec{w}_{1}-\vec{p} \cdot \vec{a}\right)}$ that represents it. From a comparison of the two conclude whether the representation of the Galilei group discussed here is projective.

[4] Newton's Second Law and Its Quantum Corrections (20 points)

Recall Ehrenfests Theorem for the expectation values of position and momentum of a particle. We discussed that it only recovers the classical equation of motion if $\langle\nabla V(\vec{r})\rangle=$ $\nabla V(\langle\vec{r}\rangle)$. Quantify this condition for a slowly varying potential energy function $V(\vec{r})$ by deriving from Ehrenfest's Theorem Newton's Second Law for expectation values and the leading quantum correction term to it, i.e. $d\langle\vec{p}\rangle / d t=-\vec{F}(\langle\vec{r}\rangle)+$ first quantum correction. Hint: Taylor expansion.

