Physics 606 - Spring 2015

Homework 4

Instructor: Rainer J. Fries
Turn in your work by March 3

[1] Baker-Campbell-Hausdorff Relations (25 points)

Let F, G be two operators on a vector space of functions.
(a) Prove that

$$
\begin{equation*}
e^{F} G e^{-F}=\sum_{k=0}^{\infty} \frac{1}{k!}[F,[F, \ldots,[F, G]] \ldots] \tag{1}
\end{equation*}
$$

where the \ldots indicate k applications of the commutator with G.
Hint: On possible proof resolves both sides into sums of terms of the form $\sim F^{k-j} G F^{j}$ and uses induction.
(b) Prove the following simplified Baker-Campbell-Hausdorff formula if F and G both commute with their commutator $[F, G]$:

$$
\begin{equation*}
e^{F} e^{G}=e^{F+G+[F, G] / 2} \tag{2}
\end{equation*}
$$

Hint: Consider the expression $d\left(e^{t F} e^{t G}\right) / d t$ where t is a real-valued parameter. Establish a differential equation for $e^{t F} e^{t G}$ which you can easily solve.

Commutators and Poisson Brackets; Products of Conjugate Variables (25 points)

Let $H=p^{2} / 2 m+V(\vec{r})$ be the Hamilton operator of a system.
[2] (a) Calculate the commutator $[\vec{r} \cdot \vec{p}, H]$ where \vec{r} and \vec{p} are the position and momentum operator, respectively. Show that the commutator $[\vec{p} \cdot \vec{r}, H]$ results in the same operator.
(b) Compute $[(\vec{r} \cdot \vec{p})(\vec{r} \cdot \vec{p}), H]$ and $[(\vec{r} \cdot \vec{p})(\vec{p} \cdot \vec{r}), H]$ for the special case $V=0$. Compare both resulting operators by applying them to a plane wave test function $e^{i(\vec{r} \cdot \vec{p}-E t) / \hbar}$.
(c) Calculate the classical Poisson bracket ${ }^{1}\{\vec{r} \cdot \vec{p}, H\}$ and compare to the result of (a). Also compare the fundamental commutators and Poisson brackets $\left[r_{i}, p_{j}\right]$ and $\left\{r_{i}, p_{j}\right\}$, $i, j=1,2,3$. Does the correspondence principle between commutators of operators and Poisson brackets of their classical counterparts work in those cases?
(d) For the special case $V=0$ calculate the classical Poisson bracket $\left\{(\vec{r} \cdot \vec{p})^{2}, H\right\}$ and compare to the results of (b). Is the correspondence principle tenable?
[3] Schrödinger Equation with Electromagnetic Potential (25 points)
Recall that the classical Hamilton function for a particle of mass m and charge q subject to electrostatic and magnetic potentials $\phi(\vec{r}, t)$ and $\vec{A}(\vec{r}, t)$, respectively, is

$$
\begin{equation*}
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}+q \phi . \tag{3}
\end{equation*}
$$

[^0](a) What are the Hamilton-Jacobi equation for the classical action S_{cl} and the classical continuity equation in this case?
Hint: Note that in the presence of a vector potential \vec{A} the relevant velocity is $(\vec{p}-$ $q \vec{A}) / m$.
(b) Show that the Schrödinger equation with electromagnetic potentials
\[

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)=\frac{1}{2 m}(-i \hbar \nabla-q \vec{A})^{2} \psi(\vec{r}, t)+q \phi \psi(\vec{r}, t) \tag{4}
\end{equation*}
$$

\]

for a wave function

$$
\begin{equation*}
\psi=C(\vec{r}, t) e^{\frac{i}{\hbar} S(\vec{r}, t)} \tag{5}
\end{equation*}
$$

with real amplitude C and phase S reduces to the two classical equations from (a) for $\hbar \rightarrow 0$ and $S \rightarrow S_{\mathrm{cl}}$.
[4] Gauge Invariance and Lorentz Force (25 points)
(a) Show that the Schrödinger equation from problem [3](b) is invariant under the simultaneous gauge transformations

$$
\begin{equation*}
\vec{A} \mapsto \vec{A}+\nabla f \quad \phi \mapsto \phi-\frac{\partial f}{\partial t} \quad \psi \mapsto e^{\frac{i}{\hbar} q f} \psi \tag{6}
\end{equation*}
$$

where $f(\vec{r}, t)$ is a real-valued function.
(b) Show that the quantum mechanical Lorentz force is given by

$$
\begin{equation*}
m \frac{d}{d t}\langle\vec{v}\rangle=\frac{q}{2}\langle\vec{v} \times \vec{B}-\vec{B} \times \vec{v}\rangle+q\langle\vec{E}\rangle \tag{7}
\end{equation*}
$$

where the velocity operator is given by the operator identity

$$
\begin{equation*}
\vec{v}=\frac{1}{m}(\vec{p}-q \vec{A}) \tag{8}
\end{equation*}
$$

and $\vec{E}=-\nabla \phi-\partial \vec{A} / \partial t$ and $\vec{B}=\nabla \times \vec{A}$ are the usual electric and magnetic fields.

[^0]: ${ }^{1}$ We agree to use the definition $\{f, g\}=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial r_{k}} \frac{\partial g}{\partial p_{k}}-\frac{\partial f}{\partial p_{k}} \frac{\partial g}{\partial r_{k}}\right)$.

