Physics 606 - Spring 2015

Homework 3

Instructor: Rainer J. Fries
Turn in your work by February 24
[1] Operator Algebra (25 points)
(a) Let F and G be two operators on a vector space of functions. They both commute with their commutator $[F, G]$. Show that for any $n \in \mathbb{N}$

$$
\begin{align*}
{\left[F, G^{n}\right] } & =n G^{n-1}[F, G] \tag{1}\\
{\left[F^{n}, G\right] } & =n F^{n-1}[F, G] \tag{2}
\end{align*}
$$

(b) Prove that the Jacobi identity

$$
\begin{equation*}
[F,[G, H]]+[H,[F, G]]+[G,[H, F]] \tag{3}
\end{equation*}
$$

holds for arbitrary operators F, G, H.

[2] Commutators in Coordinate and Momentum Space (25 points)

Let $F(\vec{r})$ and $G(\vec{p})$ be two physical quantities as a function of coordinate \vec{r} and momentum \vec{p} respectively. Let F_{p}, G_{p} and F_{r}, G_{r} be the operators representing F and G in momentum and coordinate space respectively, acting on spaces of sufficiently fast falling functions \mathcal{S}_{r} and \mathcal{S}_{p} respectively. Prove that the commutators of F and G in both representations are related by Fourier transformation, i.e.

$$
\begin{equation*}
\left[F_{r}, G_{r}\right] f(\vec{r})=(2 \pi \hbar)^{-3 / 2} \int_{\mathbb{R}^{3}}\left[F_{p}, G_{p}\right] \hat{f}(\vec{p}) e^{\frac{i}{\hbar} \vec{r} \cdot \vec{p}} d^{3} p \tag{4}
\end{equation*}
$$

for any test function $f \in \mathcal{S}_{r}$ with Fourier transform $\hat{f} \in \mathcal{S}_{p}$.
Note: This can easily be generalized to a proof of the statement in II.3.2 in the lecture which makes the same statement for arbitary F, G as long as pairs of conjugate variables are separable.
[3] Time Evolution of Wave Packet Widths (25 points)
Using the equation of motion for expectation values show that for a free particle of mass m in one dimension the usual variances $(\Delta p)^{2}=\left\langle(p-\langle p\rangle)^{2}\right\rangle,(\Delta x)^{2}=\left\langle(x-\langle x\rangle)^{2}\right\rangle$ in momentum and coordinate space have the time dependences

$$
\begin{align*}
& (\Delta p)^{2}(t)=(\Delta p)^{2}(0)=\text { const. } \tag{5}\\
& (\Delta x)^{2}(t)=(\Delta x)^{2}(0)+\frac{2}{m}\left[\frac{1}{2}\langle x p+p x\rangle(0)-\langle x\rangle(0)\langle p\rangle(0)\right] t+\frac{(\Delta p)^{2}(0)}{m^{2}} t^{2} \tag{6}
\end{align*}
$$

if they exist.
[4] Gaussian Wave Packets - Part III (25 points)
(a) Use the result of [3] to calculate $(\Delta x)^{2}$ and $(\Delta p)^{2}$ as function of time t for the propagating Gaussian wave packet from HW 2, problem [1].
(b) Now calculate $(\Delta x)^{2}$ and $(\Delta p)^{2}$ directly from the explicit results of HW 2, problem [1] and compare to (a).

