Physics 606 — Spring 2015

Homework 3

Instructor: Rainer J. Fries

Turn in your work by February 24

[1] **Operator Algebra** (25 points)

(a) Let F and G be two operators on a vector space of functions. They both commute with their commutator [F, G]. Show that for any $n \in \mathbb{N}$

$$[F, G^n] = nG^{n-1}[F, G]$$
 (1)

$$[F^{n}, G] = nF^{n-1}[F, G]$$
(2)

(b) Prove that the Jacobi identity

$$[F, [G, H]] + [H, [F, G]] + [G, [H, F]]$$
(3)

holds for arbitrary operators F, G, H.

[2] Commutators in Coordinate and Momentum Space (25 points)

Let $F(\vec{r})$ and $G(\vec{p})$ be two physical quantities as a function of coordinate \vec{r} and momentum \vec{p} respectively. Let F_p , G_p and F_r , G_r be the operators representing F and G in momentum and coordinate space respectively, acting on spaces of sufficiently fast falling functions S_r and S_p respectively. Prove that the commutators of F and G in both representations are related by Fourier transformation, i.e.

$$[F_r, G_r] f(\vec{r}) = (2\pi\hbar)^{-3/2} \int_{\mathbb{R}^3} [F_p, G_p] \hat{f}(\vec{p}) e^{\frac{i}{\hbar}\vec{r}\cdot\vec{p}} d^3p$$
(4)

for any test function $f \in S_r$ with Fourier transform $\hat{f} \in S_p$.

Note: This can easily be generalized to a proof of the statement in II.3.2 in the lecture which makes the same statement for arbitrary F, G as long as pairs of conjugate variables are separable.

[3] Time Evolution of Wave Packet Widths (25 points)

Using the equation of motion for expectation values show that for a free particle of mass m in one dimension the usual variances $(\Delta p)^2 = \langle (p - \langle p \rangle)^2 \rangle$, $(\Delta x)^2 = \langle (x - \langle x \rangle)^2 \rangle$ in momentum and coordinate space have the time dependences

$$(\Delta p)^2(t) = (\Delta p)^2(0) = \text{const.}, \qquad (5)$$

$$(\Delta x)^{2}(t) = (\Delta x)^{2}(0) + \frac{2}{m} \left[\frac{1}{2} \langle xp + px \rangle (0) - \langle x \rangle (0) \langle p \rangle (0) \right] t + \frac{(\Delta p)^{2}(0)}{m^{2}} t^{2}, \quad (6)$$

if they exist.

[4] Gaussian Wave Packets — Part III (25 points)

- (a) Use the result of [3] to calculate $(\Delta x)^2$ and $(\Delta p)^2$ as function of time t for the propagating Gaussian wave packet from HW 2, problem [1].
- (b) Now calculate $(\Delta x)^2$ and $(\Delta p)^2$ directly from the explicit results of HW 2, problem [1] and compare to (a).