Physics 606 - Spring 2015

Homework 2

Instructor: Rainer J. Fries
Turn in your work by February 17
[1] Gaussian Wave Packets - Part II (25 points)
At time $t=0$ consider a Gaussian wave packet (cf. HW I, [3]) centered around x_{0} with an average momentum k_{0}, i.e.

$$
\begin{equation*}
\psi(x, 0)=(\sqrt{2 \pi} \sigma)^{-1 / 2} e^{i k_{0} x} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma^{2}}} \tag{1}
\end{equation*}
$$

(a) If this packet represents a free particle of energy $E=k_{0}^{2} / 2 m$ calculate the time evolution $\psi(x, t)$ in explicit form.
(b) Using a program of your choice (Mathematica, Matlab, etc.) plot the real and imaginary parts of $\psi(x, t)$ as well as $|\psi(x, t)|^{2}$ as functions of x for different values of t. Choose suitable parameters to document the spreading of the wave packet with time. What determines the "speed" with which the width of the wave packet increases?

[2] Schrödinger Equation in Momentum Space (20 points)

Starting from the Schrödinger equation in coordinate space for a particle of mass m and potential energy $V(\vec{r})$ explicitly show that

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \phi(\vec{p}, t)=\frac{p^{2}}{2 m} \phi(\vec{p}, t)+V\left(i \hbar \nabla_{p}\right) \phi(\vec{p}, t) \tag{2}
\end{equation*}
$$

where $\phi(\vec{p}, t)$ is the Fourier transformation of a coordinate space solution $\psi(\vec{r}, t)$.
[3] Continuity Equation (30 points)
(a) Consider a system of classical particles described by a density $\rho(\vec{r}, t)$ and a velocity field $\vec{v}(\vec{r}, t)$. Consider a volume $V \equiv V(t)$ co-moving with the particle flow, i.e. the particle number in this volume is conserved,

$$
\begin{equation*}
\frac{d}{d t} \int_{V(t)} \rho d^{3} r=0 \tag{3}
\end{equation*}
$$

From this condition derive the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \vec{v})=0 \tag{4}
\end{equation*}
$$

(b) Consider wave functions $\psi_{1}(\vec{r}, t)$ and $\psi_{2}(\vec{r}, t)$ which obey the same time-dependent Schrödinger equation. Derive the current density $\vec{j}_{12}(\vec{r}, t)$ which fulfills the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\psi_{1} \psi_{2}^{*}\right)+\nabla \cdot \vec{j}_{12}=0 \tag{5}
\end{equation*}
$$

(c) Hence what is the current \vec{j} that satisfies the continuity equation for the probability density $\rho=|\psi|^{2}$ of a single field ψ ? Show that \vec{j} goes towards the result from (a), i.e. $\vec{j} \rightarrow \rho \vec{v}$ in the classical limit.
[4] Discontinuous Potential Energy (25 points)
Consider a potential energy function $V(\vec{r})$ which is discontinuous at the plane $z=0$. Show that wave functions with the boundary conditions

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0} \psi(x, y,-\epsilon, t) & =\lim _{\epsilon \rightarrow 0} \psi(x, y,+\epsilon, t) \tag{6}\\
\lim _{\epsilon \rightarrow 0} \frac{\partial}{\partial z} \psi(x, y,-\epsilon, t) & =\lim _{\epsilon \rightarrow 0} \frac{\partial}{\partial z} \psi(x, y,+\epsilon, t) \tag{7}
\end{align*}
$$

for each point $(x, y, 0)$ on the surface and for all times t satisfy the continuity equation of quantum mechanics. In other words, both the wave function and its derivative normal to the surface have to be continuous.

