
Physics 606 — Spring 2015

Homework 10
Instructor: Rainer J. Fries Turn in your work by April 28

[1] Some More Commutators of Angular Momentum Operators (20 points)

(a) Compute the commutators [Li, rj], [Li, pj ] and [Li, Kj], i = 1, 2, 3, where Li, ri, pi
and Ki are the orbital angular momentum, position, momentum, and boost operators,

respectively.

(b) For the raising and lowering operators L± = Lx ± iLy compute the commutators

[L±, Lz] and [L+, L−]. Show that L2 − L2
z = L±L∓ ∓ ~Lz

[2] Harmonic Oscillator Algebra (40 points)

(a) Calculate the matrix representation of the lowering and raising operators a and a† of the

harmonic oscillator with respect to the energy eigenstate basis |n〉, n ∈ N. I.e. calculate

the matrix elements 〈n′|a|n〉, etc.

(b) With the help of (a) determine the normalization factors Cn, Dn, Nn in the following

equations from lecture:

a|n〉 = Cn|n− 1〉 a†|n〉 = Dn|n + 1〉 |n〉 = Nn(a
†)n|0〉 (1)

(c) Compute the matrix representation of the position operator x̂ with respect to the basis

|n〉, n ∈ N.1

(d) Consider the trivial eigenvalue equation x̂|x〉 = x|x〉 where x̂ is the position operator,

and x the position described by the eigenstate |x〉. Derive the corresponding “matrix

equation” that is the eigenvalue equation for the amplitudes ψn(x) = 〈n|x〉 of the

positions in the basis |n〉, n ∈ N.

Hint: Insert a complete set of states.

(e) Of course the ψn(x) are just the complex conjugates of the coordinate space wave func-

tions of the harmonic oscillator, 〈x|n〉. Show that the eigenvalue problem for the ψn(x)
in (d) is solved by

ψn(x) = 2−
n

2 (n!)−
1

2hn

(
√

mω

~
x

)

ψ0(x) (2)

where the hn(x) satisfy the recurrence relation

hn+1(x)− 2xhn(x) + 2nhn−1(x) = 0 . (3)

(f) Show that the Hermite polynomials satisfy the recurrence relations from (e), so that

hn(x) = CHn(x).
Hint: You can, e.g., use the relation you proved in HW VI, [1](c).

1We use the .̂ symbol for the operator x here to avoid confusion with x labeling the eigenvalues of this operator.
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Note: You could get the remaining unknowns Cψ0(x) which contain the Gaussian and the

normalization factor from the closure relation, but you don’t need to do that here.

[3] Free Particle Solutions in Spherical Coordinates (40 points)

Consider a free particle of mass m. Since L2 and Lz commute with the free Hamilton

operator H , you can find simultaneous eigenfunctions ψ(~r) = ψ(r, θ, φ) for H , L2 and Lz.

(a) The ansatz ψl,m(r, θ, φ) = CR(r)Y m
l (θ, φ), where the Y m

l (θ, φ) are the spherical har-

monics from HW IX, [2], obviously provides eigenfunctions of L2 and Lz with eigen-

values ~2l(l + 1) and ~m. Show that the “radial” differential equation that R(r) needs

to satisfy to make ψl,m an eigenfunction of H as well is

d2R

dρ2
+

2

ρ

dR

dρ
+

[

1− l(l + 1)

ρ2

]

R = 0 (4)

where we have introduced the dimensionless radial coordinate ρ = r
√
2mE/~.

(b) The radial equation above is also called the spherical Bessel equation. Its regular solu-

tions are the spherical Bessel functions jl which are in integral representation defined

as

jl(ρ) =
ρl

2l+1l!

∫

1

−1

eiρs(1− s2)lds . (5)

(We will not be interested in its singular solutions which are the spherical Neumann

functions nl). Show that the jl given above satisfy the radial equation from (a).

(c) Show that

jl(z) = (−1)lρl
(

d

ρdρ

)l
sin ρ

ρ
. (6)

Give the first 3 spherical Bessel functions (l = 0, 1, 2) explicitly and graph them.

(d) We already know that plane waves are eigenfunctions ofH that are also simultaneously

eigenfunctions for the components of the momentum vector ~p. Assume a particle in a

stationary plane wave ei
~k·~r with wave vector ~k = kêz pointing in z-direction. Derive an

expression that describes this plane wave in terms of angular momentum eigenstates.
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