Physics 606 — Spring 2015

Homework 10
Instructor: Rainer J. Fries Turn in your work by April 28

[1] Some More Commutators of Angular Momentum Operators (20 points)

(a) Compute the commutators [L;, 7], [L;, p;] and [L;, K;], i = 1,2,3, where L;, r;, p;
and K are the orbital angular momentum, position, momentum, and boost operators,
respectively.

(b) For the raising and lowering operators L, = L, £ iL, compute the commutators
[Ly,L.]and [L,, L_]. Show that L* — L? = Ly L+ F hL,

[2] Harmonic Oscillator Algebra (40 points)

(a) Calculate the matrix representation of the lowering and raising operators a and a' of the
harmonic oscillator with respect to the energy eigenstate basis |n), n € N. Le. calculate
the matrix elements (n'|a|n), etc.

(b) With the help of (a) determine the normalization factors C,,, D,,, IV,, in the following
equations from lecture:

aln) = Cyln — 1) a'ln) = Dy|n +1) In) = N, (a')"|0) (1)

(c) Compute the matrix representation of the position operator z with respect to the basis
In), n € N.!

(d) Consider the trivial eigenvalue equation #|x) = x|z) where Z is the position operator,
and x the position described by the eigenstate |x). Derive the corresponding “matrix
equation” that is the eigenvalue equation for the amplitudes ¢, (z) = (n|z) of the
positions in the basis |n), n € N.

Hint: Insert a complete set of states.

(e) Of course the 1, (z) are just the complex conjugates of the coordinate space wave func-
tions of the harmonic oscillator, (x|n). Show that the eigenvalue problem for the v, ()

in (d) is solved by
bn(z) = 275 ()2 h, (, /%x) Yo() )

where the h,,(z) satisfy the recurrence relation
hpi1(x) — 2xhy,(x) + 2nhy,—1(x) = 0. 3)

(f) Show that the Hermite polynomials satisfy the recurrence relations from (e), so that
hn(z) = CH,(x).
Hint: You can, e.g., use the relation you proved in HW VI, [1](c).

"'We use the * symbol for the operator z here to avoid confusion with z labeling the eigenvalues of this operator.
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Note: You could get the remaining unknowns Cy(x) which contain the Gaussian and the
normalization factor from the closure relation, but you don’t need to do that here.

[3] Free Particle Solutions in Spherical Coordinates (40 points)

Consider a free particle of mass m. Since L? and L, commute with the free Hamilton
operator H, you can find simultaneous eigenfunctions (') = ¢ (r, 6, ¢) for H, L*> and L..

(a)

(b)

©)

(d)

The ansatz v, ,,,(r, 6, ¢) = CR(r)Y;™(0, ¢), where the Y;™(6, ¢) are the spherical har-
monics from HW IX, [2], obviously provides eigenfunctions of L? and L. with eigen-
values 72[(I + 1) and iim. Show that the “radial” differential equation that R(r) needs
to satisfy to make 1/ ,,, an eigenfunction of H as well is

>R 2dR l(l+1

— +—+ 1—<+) R=0 “4)
dp*  pdp

where we have introduced the dimensionless radial coordinate p = rv/2mFE/h.

The radial equation above is also called the spherical Bessel equation. Its regular solu-
tions are the spherical Bessel functions j; which are in integral representation defined
as

! 1
. P 108
Ji(p) = pyERyT] /_1 (1 —s%)'ds. &)
(We will not be interested in its singular solutions which are the spherical Neumann
functions n;). Show that the j; given above satisfy the radial equation from (a).

Show that
d lsinp
gi(z) = (=) (—) . (6)
1(2) = (=1) i)

Give the first 3 spherical Bessel functions (I = 0, 1, 2) explicitly and graph them.

We already know that plane waves are eigenfunctions of H that are also simultaneously
eigenfunctions for the components of the momentum vector p. Assume a particle in a
stationary plane wave e**” with wave vector k= ke, pointing in z-direction. Derive an
expression that describes this plane wave in terms of angular momentum eigenstates.



