
Physics 606 (Quantum Mechanics I) — Spring 2014

Final Exam
Instructor: Rainer J. Fries

[1] δ-Potential (30 points)

A particle of mass m in one dimension interacts with an attractive δ-shaped potential energy

V (x) = V0δ(x) with V0 < 0.

(a) (15) Discuss the eigenvalues and eigenfunctions of the Hamilton operator H = p2

2m
+V

for particle energies E < 0 (i.e. bound states). How many bound states are there?

(b (15) Discuss the stationary solutions for the scattering case E > 0. Derive the M-

matrix and the coefficients of transmission and reflexivity of the barrier for incoming

plane waves.

Hint: Integrate the Schrödinger Equation in a small region around x = 0 to see the effect of

the δ-function potential on the matching of the asymptotic solutions for x > 0 and x < 0.

[2] Spherical Potential Well (25 points)

Consider a particle of mass m interacting with an infinite spherical potential well of radius

R in 3 dimensions, with V (~r) = 0 for r < R and V (~r) = ∞ for r > R.

(a) (20) Write down a general ansatz for the wave function of stationary bound states and

explain it. Give a set of equations that could determine all remaining parameters in your

ansatz.

(b) (5) Find the energies of the lowest four energy eigenstates and describe the quantum

numbers that label these states.

You do not have to find the proper normalization of those states.

[3] Angular Momentum Algebra (20 points)

Consider a system in an eigenstate of the squared angular momentum operator J2 with quan-

tum number j = 1. The possible eigenstates of Jz that span this space are denoted by the

magnetic quantum number m as |m〉 = |1, m〉 .

(a) (10) Give the matrix elements of the operators Jx, Jy, Jz and J2 in this Jz-representation.

(b) (5) Check the commutator [Jx, Jy] explicitly in matrix representation. Does it coincide

with the result you expect?

(c) (5) Calculate the expectation values 〈Jx〉 and 〈J2
x〉 of the system using the results of (a).

If you were not able to solve (a) you can get partial credit for (c) by calculating these

expectation values explicitly for the case of orbital angular momentum operators Lx

and L2
x.
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[4] Perturbation Theory (25 points)

Consider a particle of massm in one dimension in a harmonic oscillator potential. In addition

a small constant field acts on the particle, creating a linear term δV = gx in the Hamilton

operator, i.e.

H =
p2

2m
+

1

2
mω2x2 + δV (1)

(a) (10) Using the harmonic oscillator with g = 0 as the unperturbed system, calculate the

shift in energy for the ground state and the first excited state of the harmonic oscillator

in the presence of the additional field in first order perturbation theory.

(b) (15) Since the results of (a) are quite unsatisfactory, apply the Rayleigh-Ritz method,

using again just the lowest two states of the unperturbed harmonic oscillator as trial

functions. Calculate the energies of the two lowest states in the presence of the field in

this approximation.
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Useful Formulae

• δ-function
1

2π

∫

R

eik(x−x0)dk = δ(x− x0) (2)

• Hamilton-Jacobi for the classical action S(~r, ~p, t)

∂S

∂t
+H(~r, ~p) = 0 with pi =

∂S

∂ri
(3)

• Current of the Schrödinger field

~j(~r, t) =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (4)

• Jacobi identity

[F, [G,H ]] + [H, [F,G]] + [G, [H,F ]] = 0 (5)

• Baker Campbell Hausdorff (if A, B commute with their commutator)

eAeB = eA+B+[A,B]/2 (6)

• Virial theorem for stationary states

2〈T 〉 = 〈~r · ∇V 〉 (7)

• Closure/completeness relation for orthonormal basis states |n〉
∑

n

|n〉〈n〉 = 1 (8)

• Generator of Galilei boosts
~K = m~r − ~pt (9)

• Hermite polynomials

d2

dξ2
Hn(ξ)− 2ξ

d

dξ
Hn(ξ) + 2nHn(ξ) = 0 , n ∈ N (10)

d

dξ
Hn(ξ) = 2nHn−1(ξ) (11)

F (ξ, s) =
∑

n∈N

Hn(ξ)
sn

n!
= eξ

2−(s−ξ)2 (12)

• Legendre Polynomials/Functions

d

dξ

(

(1− ξ2)
d

dξ

)

Pm
l (ξ)−

m2

1− ξ2
Pm
l (ξ) + l(l + 1)Pm

l (ξ) = 0 , l ∈ N , −l ≤ m ≤ l

(13)

Pl(ξ) = P 0
l (ξ) =

1

2ll!

dl

dξl
(ξ2 − 1)l , Pm

l = (1− ξ2)m/2 d
m

dξm
Pl(ξ) (14)
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• Laguerre Polynomials

ρ
d2

dρ2
Lm
n (ρ) + (m+ 1 + ρ)

d

dρ
Lm
n (ρ) + nLm

n (ρ) = 0 , n ∈ N , n ≥ 2m (15)

Ln(ρ) = L0
n(ρ) = eρ

dn

dρn

(

ρne−ρ
)

, Lm
n (ρ) = (−1)m

dm

dρm
Ln+m(ρ) (16)

• Spherical Bessel Functions

d2

dρ2
jl(ρ) +

2

ρ

d

dρ
jl(ρ) +

(

1−
l(l + 1)

ρ2

)

jl(ρ) = 0 , l ∈ N (17)

jl(ρ) = (−1)lρl
(

d

ρdρ

)l
sin ρ

ρ
(18)

The first zeros of jl are (approx.) ρ = 4.49, 7.73, . . . (l = 1), ρ = 5.76, 9.10, . . . (l = 2),

ρ = 6.99, . . . (l = 3).

• Harmonic oscillator: orthonormal energy eigenstates

ψn(x) = 2−
n

2 n!−
1

2

(mω

~π

)
1

4

Hn

(
√

mω

~
x

)

e−
mω

2~
x2

(19)

• Spherical Harmonics

Y m
l (θ, φ) =

√

2l + 1

4π

√

(l −m)!

(l +m)!
(−1)mPl(cos θ)e

imφ , l ∈ N , 0 ≤ m ≤ l (20)

• Angular Momentum Algebra

J2|j,m〉 = j(j + 1)~2|j,m〉 , J±|j,m〉 =
√

(j ∓m)(j ±m+ 1) ~|j,m+ 1〉 (21)

• Spherical Coordinates

T = −
~
2

2mr2
∂

∂r

(

r2
∂

∂r

)

+
L2

2mr2
(22)

Lx = −i~

(

− sinφ
∂

∂θ
− cosφ cot θ

∂

∂φ

)

(23)

Ly = −i~

(

cosφ
∂

∂θ
− sin φ cot θ

∂

∂φ

)

(24)

Lz = −i~
∂

∂φ
(25)
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