Physics 606 (Quantum Mechanics I) — Spring 2014

Homework 9

Instructor: Rainer J. Fries
Turn in your work by April 10
[1] Legendre Polynomials and Legendre Functions (40 points)
Consider the differential equation

$$
\begin{equation*}
\frac{d}{d \xi}\left(\left(1-\xi^{2}\right) \frac{d P}{d \xi}\right)-\frac{m^{2}}{1-\xi^{2}} P+\lambda P=0 \tag{1}
\end{equation*}
$$

for a function $P(\xi),-1<\xi<1$, with parameters $m \in \mathbb{N}$ and $\lambda \in \mathbb{R}$. It is called Legendre's differential equation.
(a) Consider the special case $m=0$. Make a power series ansatz for the solution, $P(\xi)=$ $\sum_{j=1}^{\infty} a_{j} \xi^{j}$. From the differential equation derive a recursion relation between coefficients a_{j} and a_{j+2}. Show that the power series diverges at the endpoints $\xi= \pm 1$ unless $\lambda=l(l+1)$ where $l \in \mathbb{N}$ is a non-negative integer.
(b) The outcome of (a) suggests that the only physically acceptable, non-singular solutions to Legendre's equation for $m=0$ are polynomials and they can be labeled by a quantum number l with $\lambda=l(l+1)$. Show that these Legendre polynomials are given by

$$
\begin{equation*}
P_{l}(\xi)=\frac{1}{2^{l} l!} \frac{d^{l}}{d \xi^{l}}\left(\xi^{2}-1\right)^{l} . \tag{2}
\end{equation*}
$$

(The normalization is simply a convention.) What is the degree of P_{l} ?
(c) Write down the first four Legendre polynomials $(l=0,1,2,3)$ explicitly.
(d) Show that Legendre polynomials are mutually orthogonal with respect to a scalar product defined as integration over the interval $[-1,1]$, and their norm is $\sqrt{2 /(2 l+1)}$, i.e.

$$
\begin{equation*}
\int_{-1}^{1} P_{l}(\xi) P_{l^{\prime}}(\xi) d \xi=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{3}
\end{equation*}
$$

(e) Now we return to the general case of Legendre's differential equation. Show that for $m \leq l$ the functions

$$
\begin{equation*}
P_{l}^{m}(\xi)=\left(1-\xi^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d \xi^{m}} P_{l}(\xi) \tag{4}
\end{equation*}
$$

are solutions to (1) . They are called associated Legendre functions of the first kind.

[2] Angular Momentum Operators (40 points)

(a) Show the following commutation relations for the angular momentum operator $\vec{L}=\vec{r} \times$ \vec{p} : (i) $\left[L_{j}, L_{k}\right]=\epsilon_{j k l} i \hbar L_{l}, j, k, l=1,2,3$ where $\epsilon_{j k l}$ is the usual anti-symmetruc LeviCivita tensor with $\epsilon_{123}=1$; (ii) $\left[L_{j}, L^{2}\right]=0$ for $j=1,2,3$ where $L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}$.
(b) Derive the nabla operator ∇ and the Laplace operator \triangle in spherical coordinates r, θ, ϕ.
(c) Give explicit expressions of the operators L_{X}, L_{y} and L_{z}, in coordinate space represenations in spherical coordinates and show that in particular

$$
\begin{equation*}
L^{2}=-\hbar^{2}\left[\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)\right] . \tag{5}
\end{equation*}
$$

(d) Since L_{z} and L^{2} are commuting operators we can find common eigenfunctions. Solve the two eigenvalue equations ${ }^{1}$

$$
\begin{align*}
L_{z} Y(\theta, \phi) & =m \hbar Y(\theta, \phi) \tag{6}\\
L^{2} Y(\theta, \phi) & =\lambda \hbar^{2} Y(\theta, \phi) \tag{7}
\end{align*}
$$

by choosing a separation ansatz $Y(\theta, \phi)=\Phi(\phi) \Theta(\theta)$. The functions $Y(\theta, \phi)$ in proper normalization (discussed later) are called spherical harmonics.
Hint: First solve for $\Phi(\phi)$ (what are the allowed values for m ?) and then show that the equation for Θ reduces to Legendre's differential equation from problem [1].

[3] Ground State Splitting for the Double Harmonic Osciallator (20 points)

Consider a particle of mass m in a double harmonic oscillator potential $V(x)=\frac{1}{2} m \omega^{2}(|x|-$ $a)^{2}$ where a is the parameter determining the separation of the two harmonic oscillator minima.
(a) We choose trial functions

$$
\begin{equation*}
\psi_{ \pm}^{n}=N_{ \pm}^{n}\left[\psi_{n}(x-a) \pm \psi_{n}(x+a)\right] \tag{8}
\end{equation*}
$$

as discussed in section III.4, where the ψ_{n} are the usual harmonic oscillator eigenfunctions. Calculate the values of the functional $\langle H\rangle\left[\psi_{ \pm}^{0}\right]$ for the case $n=0$. As you know they are approximations to the energies of the true ground state and first excited state.
(b) In the asymptotic limit $a \rightarrow \infty$ the integrals you obtained in (a) should evaluate to simple expressions. Show that the leading terms in this limit are

$$
\begin{equation*}
\langle H\rangle\left[\psi_{ \pm}^{0}\right]=\frac{1}{2} \hbar \omega \mp \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^{2}} \tag{9}
\end{equation*}
$$

in terms of the dimensionless parameter $\alpha=\sqrt{m \omega / \hbar} x$. Thus which trial function, ψ_{+}^{0} or ψ_{-}^{0}, is the approximation for the ground state?

[^0]
[^0]: ${ }^{1}$ It is customary to write powers of \hbar explicitly in this eigenvalue problem.

