
Physics 606 (Quantum Mechanics I) — Spring 2014

Homework 8
Instructor: Rainer J. Fries Turn in your work by April 3

[1] δ-Function Potential (25 points)

Consider a particle of mass m subject to a δ-shaped barrier, i.e. with potential energy

V (x) = Cδ(x) where C > 0.

(a) Discuss the stationary solutions for this problem. Derive the M-matrix and the coeffi-

cients of transmission and reflexivity of the barrier for incoming plane waves.

Hint: Integrate the Schrödinger Equation in a small region around x = 0 to see the

effect of the δ-function potential on the matching of the asymptotic solutions for x > 0
and x < 0.

(b) Obviously the δ-function barrier can be thought of as an appropriate limit of a finite

barrier of width 2a and height V0 as discussed in II.2 in the lecture. How are a, V0 and

C related in that limit? Show that you recover the M-matrix from part (a) if you take

the correct limit of the M-matrix of the finite barrier as discussed in class.

[2] Hamilton’s Principle for Fields (25 points)

Consider a field ψ(x) as a function of coordinates x = (xi)
N
i=1

. Let L(ψ, ∂ψ
∂xj
, x) be the

Lagrange density for ψ, depending on ψ, its first derivatives, and the position vector x. Let

S[ψ] =

∫

Γ

L

(

ψ,
∂ψ

∂xj
, x

)

dxN (1)

be the action defined as an integral of the Lagrange density over a region Γ in R
N . In the

following we only consider fields ψ that take fixed values on the boundary of Γ, denoted as

∂Γ. Show that the following two statements are equivalent:1

(i) ψ(x) is an extremum of the functional S, i.e. small variations δψ(x) around ψ(x) con-

sistent with the boundary conditions leave S invariant: δS = 0.

(ii) ψ satiesfies the Euler-Lagrange field equation

∂L

∂ψ
−

∂

∂xj

∂L

∂
(

∂ψ

∂xj

) = 0. (2)

Hint: You can parameterize small deviations from ψ(x) as ψ(x, α) = ψ(x) + αη(x) where

α is a “small” parameter and η(x) is a test function which has to vanish on ∂Γ. Then δS =
(∂S/∂α)δα; OR take your favorite classical mechanics textbook, look up the derivation of

1This statement can be easily generalized to a Lagrange density involving several fields ψi(x), as for example required for the

complex Schrödinger field.
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the Euler-Lagrange equations from the Hamilton Principle when ψ is only a function of one

parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional

parameter space.

[3] Triangular Potential – Exact Solution (25 points)

Consider a particle of mass m in a linear confining potential V (x) = b|x|.

(a) Show that the time-independent Schrödinger equation in this case can be rewritten as a

differential equation of the type

d2

dx2
ψ − xψ = 0 . (3)

The solutions to this equation are the famous Airy-functions Ai(x) and Bi(x) with

limx→∞Ai(x) = 0 and limx→∞Bi(x) = ∞. If you are not familiar with Airy functions

you can find basic information at

http://mathworld.wolfram.com/AiryFunctions.html

(b) Now you can discuss the energy eigenfunctions and eigenvalues for this potential. Give

the two lowest energy eigenvalues explicitly (the zeros of Ai and its derivativeAi′ with

smallest absolute values are -2.33811 and -1.01879, respectively).

[4] Triangular Potential in 1-Parameter Approximations (25 points)

Consider again the situation of problem [3].

(a) Approximate the ground state solution by a Gaussian function of type e−α
2x2 with pa-

rameter α. Find the value of α that makes the functional 〈H〉 stationary. Compare the

energy eigenvalue you obtain for the ground state with the true value from [3].

(b) Repeat the discussion using a Gaussian with one node of type xe−α
2x2 as an approxima-

tion for the first excited state. Again determine the best value for the energy eigenvalue

and compare to the result of [3].

(c) Repeat (a) by using an exponential function e−β|x| for the ground state. Which trial

function gives the better approximation to the ground state?
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