Physics 606 (Quantum Mechanics I) — Spring 2014

Homework 8

Instructor: Rainer J. Fries
Turn in your work by April 3
[1] δ-Function Potential (25 points)
Consider a particle of mass m subject to a δ-shaped barrier, i.e. with potential energy $V(x)=C \delta(x)$ where $C>0$.
(a) Discuss the stationary solutions for this problem. Derive the M-matrix and the coefficients of transmission and reflexivity of the barrier for incoming plane waves.
Hint: Integrate the Schrödinger Equation in a small region around $x=0$ to see the effect of the δ-function potential on the matching of the asymptotic solutions for $x>0$ and $x<0$.
(b) Obviously the δ-function barrier can be thought of as an appropriate limit of a finite barrier of width $2 a$ and height V_{0} as discussed in II. 2 in the lecture. How are a, V_{0} and C related in that limit? Show that you recover the M-matrix from part (a) if you take the correct limit of the M-matrix of the finite barrier as discussed in class.

[2] Hamilton's Principle for Fields (25 points)

Consider a field $\psi(x)$ as a function of coordinates $x=\left(x_{i}\right)_{i=1}^{N}$. Let $\mathcal{L}\left(\psi, \frac{\partial \psi}{\partial x_{j}}, x\right)$ be the Lagrange density for ψ, depending on ψ, its first derivatives, and the position vector x. Let

$$
\begin{equation*}
S[\psi]=\int_{\Gamma} \mathcal{L}\left(\psi, \frac{\partial \psi}{\partial x_{j}}, x\right) d x^{N} \tag{1}
\end{equation*}
$$

be the action defined as an integral of the Lagrange density over a region Γ in \mathbb{R}^{N}. In the following we only consider fields ψ that take fixed values on the boundary of Γ, denoted as $\partial \Gamma$. Show that the following two statements are equivalent: ${ }^{1}$
(i) $\psi(x)$ is an extremum of the functional S, i.e. small variations $\delta \psi(x)$ around $\psi(x)$ consistent with the boundary conditions leave S invariant: $\delta S=0$.
(ii) ψ satiesfies the Euler-Lagrange field equation

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\frac{\partial \psi}{\partial x_{j}}\right)}=0 \tag{2}
\end{equation*}
$$

Hint: You can parameterize small deviations from $\psi(x)$ as $\psi(x, \alpha)=\psi(x)+\alpha \eta(x)$ where α is a "small" parameter and $\eta(x)$ is a test function which has to vanish on $\partial \Gamma$. Then $\delta S=$ $(\partial S / \partial \alpha) \delta \alpha$; OR take your favorite classical mechanics textbook, look up the derivation of

[^0]the Euler-Lagrange equations from the Hamilton Principle when ψ is only a function of one parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional parameter space.

[3] Triangular Potential - Exact Solution (25 points)

Consider a particle of mass m in a linear confining potential $V(x)=b|x|$.
(a) Show that the time-independent Schrödinger equation in this case can be rewritten as a differential equation of the type

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} \psi-x \psi=0 \tag{3}
\end{equation*}
$$

The solutions to this equation are the famous Airy-functions $\operatorname{Ai}(x)$ and $B i(x)$ with $\lim _{x \rightarrow \infty} A i(x)=0$ and $\lim _{x \rightarrow \infty} B i(x)=\infty$. If you are not familiar with Airy functions you can find basic information at http://mathworld.wolfram.com/AiryFunctions.html
(b) Now you can discuss the energy eigenfunctions and eigenvalues for this potential. Give the two lowest energy eigenvalues explicitly (the zeros of $A i$ and its derivative $A i^{\prime}$ with smallest absolute values are -2.33811 and -1.01879 , respectively).

[4] Triangular Potential in 1-Parameter Approximations (25 points)

Consider again the situation of problem [3].
(a) Approximate the ground state solution by a Gaussian function of type $e^{-\alpha^{2} x^{2}}$ with parameter α. Find the value of α that makes the functional $\langle H\rangle$ stationary. Compare the energy eigenvalue you obtain for the ground state with the true value from [3].
(b) Repeat the discussion using a Gaussian with one node of type $x e^{-\alpha^{2} x^{2}}$ as an approximation for the first excited state. Again determine the best value for the energy eigenvalue and compare to the result of [3].
(c) Repeat (a) by using an exponential function $e^{-\beta|x|}$ for the ground state. Which trial function gives the better approximation to the ground state?

[^0]: ${ }^{1}$ This statement can be easily generalized to a Lagrange density involving several fields $\psi_{i}(x)$, as for example required for the complex Schrödinger field.

