Physics 606 (Quantum Mechanics I) — Spring 2014

Homework 8
Instructor: Rainer J. Fries Turn in your work by April 3

[1] 6-Function Potential (25 points)

Consider a particle of mass m subject to a d-shaped barrier, i.e. with potential energy
V(x) = Cd(x) where C > 0.

(a) Discuss the stationary solutions for this problem. Derive the M-matrix and the coeffi-
cients of transmission and reflexivity of the barrier for incoming plane waves.
Hint: Integrate the Schrodinger Equation in a small region around x = 0 to see the
effect of the d-function potential on the matching of the asymptotic solutions for x > 0
and v < 0.

(b) Obviously the d-function barrier can be thought of as an appropriate limit of a finite
barrier of width 2a and height V} as discussed in II.2 in the lecture. How are a, Vj and
C related in that limit? Show that you recover the M-matrix from part (a) if you take
the correct limit of the M -matrix of the finite barrier as discussed in class.

[2] Hamilton’s Principle for Fields (25 points)
Consider a field ¥(z) as a function of coordinates z = (x;)¥,. Let L(4, %, x) be the

Lagrange density for 1), depending on 1), its first derivatives, and the position vector z. Let

S[y] = /Fﬁ (w, %,x) dzy (1)
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be the action defined as an integral of the Lagrange density over a region I' in RY. In the
following we only consider fields v that take fixed values on the boundary of I', denoted as
OT. Show that the following two statements are equivalent:!

(i) ¥(z) is an extremum of the functional S, i.e. small variations ¢ (z) around v (z) con-
sistent with the boundary conditions leave S invariant: 6.5 = 0.

(i1) v satiesfies the Euler-Lagrange field equation
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Hint: You can parameterize small deviations from 1(z) as (z, o) = () + an(z) where
ais a “small” parameter and n(x) is a test function which has to vanish on OI'. Then 6S =
(0S/0a)dc; OR take your favorite classical mechanics textbook, look up the derivation of

'This statement can be easily generalized to a Lagrange density involving several fields ); (z), as for example required for the
complex Schrodinger field.



the Euler-Lagrange equations from the Hamilton Principle when 1) is only a function of one
parameter (time in classical mechanics) and generalize it to the case of a multi-dimensional
parameter space.

[3] Triangular Potential — Exact Solution (25 points)

Consider a particle of mass m in a linear confining potential V' (z) = b|z|.

(a) Show that the time-independent Schrédinger equation in this case can be rewritten as a

differential equation of the type
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v~ 3)
The solutions to this equation are the famous Airy-functions Ai(x) and Bi(x) with
lim, o Ai(z) = 0and lim,_,, Bi(z) = oco. If you are not familiar with Airy functions
you can find basic information at
http://mathworld.wolfram.com/AiryFunctions.html

(b) Now you can discuss the energy eigenfunctions and eigenvalues for this potential. Give
the two lowest energy eigenvalues explicitly (the zeros of A and its derivative Ai’ with
smallest absolute values are -2.33811 and -1.01879, respectively).

[4] Triangular Potential in 1-Parameter Approximations (25 points)

Consider again the situation of problem [3].

(a) Approximate the ground state solution by a Gaussian function of type e~**** with pa-
rameter «. Find the value of « that makes the functional (H) stationary. Compare the
energy eigenvalue you obtain for the ground state with the true value from [3].

(b) Repeat the discussion using a Gaussian with one node of type e~ " agan approxima-
tion for the first excited state. Again determine the best value for the energy eigenvalue
and compare to the result of [3].

(c) Repeat (a) by using an exponential function e~?1*! for the ground state. Which trial
function gives the better approximation to the ground state?



