Physics 606 - Spring 2014

Homework 5

Instructor: Rainer J. Fries
Turn in your work by February 25
[1] Expectation Values in a Harmonic Oscillator Potential (25 points)
Consider the 1-dimensional harmonic oscillator with Hamilton operator

$$
\begin{equation*}
H=T+V=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \tag{1}
\end{equation*}
$$

with constants $m, \omega>0$.
Work out the following problems without using explicit solutions of the Schrödinger equation.
(a) Show that the expectation value for the position $\langle x\rangle(t)$ as a function of time t obeys the same differential equation as the position of a classical particle with the corresponding Hamilton function. Solve the equation for given initial expectation values $\langle x\rangle_{0}$ and $\langle p\rangle_{0}$ at $t=0$.
(b) Show that for the expectation value of the square of the position

$$
\begin{equation*}
\left\langle x^{2}\right\rangle(t)=\frac{\left\langle p^{2}\right\rangle_{0}}{m^{2} \omega^{2}} \sin ^{2} \omega t+\left\langle x^{2}\right\rangle_{0} \cos ^{2} \omega t+\frac{1}{2 m \omega}\langle x p+p x\rangle_{0} \sin 2 \omega t \tag{2}
\end{equation*}
$$

holds where $\langle\ldots\rangle_{0}$ are expectation values at $t=0$.
Hint: It is straight forward to first derive and solve a differential equation for $\langle T-V\rangle$, then to find the solution for $\langle V\rangle \sim\left\langle x^{2}\right\rangle$.
(c) Using the results from (a) and (b) calculate the time evolution of the variance $(\Delta x)^{2}(t)$ of a wave packet in the harmonic oscillator. Test your result by showing that for $\omega \rightarrow 0$ you recover the result for a free particle from HW IV, [3].

[2] Density and Current Operators (25 points)

(a) The classical density and current for a particle of mass m undergoing a motion $\vec{R}(t)$ in \mathbb{R}^{3} is obviously

$$
\begin{equation*}
\rho_{\mathrm{cl}}(\vec{r})=\delta(\vec{r}-\vec{R}(t)) \quad \vec{j}_{\mathrm{cl}}(\vec{r})=\dot{\vec{R}} \delta(\vec{r}-\vec{R}(t)) . \tag{3}
\end{equation*}
$$

Show that the classical density and current satisfy the continuity equation.
(b) Consider the bi-local operators

$$
\begin{equation*}
\rho(\vec{r}, \vec{R})=\delta(\vec{r}-\vec{R}) \quad \vec{j}(\vec{r}, \vec{R})=\frac{1}{2 m}(\vec{p} \delta(\vec{r}-\vec{R})+\delta(\vec{r}-\vec{R}) \vec{p}) \tag{4}
\end{equation*}
$$

where \vec{r}, \vec{R} and \vec{p} are now operators in coordinate space representation. Show that they are the correct quantum mechanical replacement for the classical quantities in the sense that their expectation values in a state $\psi(\vec{r})$ yield the correct quantum mechanical expressions for the density and current of the field ψ.

[3] Schrödinger Equation with Electromagnetic Potential (25 points)

Recall that the classical Hamilton function for a particle of mass m and charge q subject to electrostatic and magnetic potentials $\phi(\vec{r}, t)$ and $\vec{A}(\vec{r}, t)$, respectively, is

$$
\begin{equation*}
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}+q \phi . \tag{5}
\end{equation*}
$$

(a) What are the Hamilton-Jacobi equation for the classical action S_{cl} and the classical continuity equation in this case?
Hint: Note that in the presence of a vector potential \vec{A} the relevant velocity is $(\vec{p}-$ $q \vec{A}) / m$.
(b) Show that the Schrödinger equation with electromagnetic potentials

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)=\frac{1}{2 m}(-i \hbar \nabla-q \vec{A})^{2} \psi(\vec{r}, t)+q \phi \psi(\vec{r}, t) \tag{6}
\end{equation*}
$$

for a wave function

$$
\begin{equation*}
\psi=C(\vec{r}, t) e^{\frac{i}{\hbar} S(\vec{r}, t)} \tag{7}
\end{equation*}
$$

with real amplitude C and phase S reduces to the two classical equations from (a) for $\hbar \rightarrow 0$ and $S \rightarrow S_{\mathrm{cl}}$.

[4] Gauge Invariance and Lorentz Force (25 points)

(a) Show that the Schrödinger equation from problem [3](b) is invariant under the simultaneous gauge transformations

$$
\begin{equation*}
\vec{A} \mapsto \vec{A}+\nabla f \quad \phi \mapsto \phi-\frac{\partial f}{\partial t} \quad \psi \mapsto e^{\frac{i}{\hbar} q f} \psi \tag{8}
\end{equation*}
$$

where $f(\vec{r}, t)$ is a real-valued function.
(b) Show that the quantum mechanical Lorentz force is given by

$$
\begin{equation*}
m \frac{d}{d t}\langle\vec{v}\rangle=\frac{q}{2}\langle\vec{v} \times \vec{B}-\vec{B} \times \vec{v}\rangle+q\langle\vec{E}\rangle \tag{9}
\end{equation*}
$$

where the velocity operator is given by the operator identity

$$
\begin{equation*}
\vec{v}=\frac{1}{m}(\vec{p}-q \vec{A}) . \tag{10}
\end{equation*}
$$

and $\vec{E}=-\nabla \phi-\partial \vec{A} / \partial t$ and $\vec{B}=\nabla \times \vec{A}$ are the usual electric and magnetic fields.

