Physics 606 — Spring 2014

Homework 4

Instructor: Rainer J. Fries

Turn in your work by February 18

[1] Commutators in Coordinate and Momentum Space (25 points)

Let $F(\vec{r})$ and $G(\vec{p})$ be two physical quantities as a function of coordinate \vec{r} and momentum \vec{p} respectively. Let F_p , G_p and F_r , G_r be the operators representing F and G in momentum and coordinate space respectively, acting on spaces of sufficiently fast falling functions S_r and S_p respectively. Prove that the commutators of F and G in both representations are related by Fourier transformation, i.e.

$$[F_r, G_r] f(\vec{r}) = (2\pi\hbar)^{-3/2} \int_{\mathbb{R}^3} [F_p, G_p] \hat{f}(\vec{p}) e^{\frac{i}{\hbar}\vec{r}\cdot\vec{p}} d^3p$$
(1)

for any test function $f \in S_r$ with Fourier transform $\hat{f} \in S_p$.

Note: This can easily be generalized to a proof of the statement in I.7.2 in the lecture which makes the same statement for arbitrary F, G as long as pairs of conjugate variables are separable (i.e. do not appear in products).

[2] Commutators and Poisson Brackets; Products of Conjugate Variables (25 points)

Let $H = p^2/2m + V(\vec{r})$ be the Hamilton operator of a system.

- (a) Calculate the commutator $[\vec{r} \cdot \vec{p}, H]$ where \vec{r} and \vec{p} are the position and momentum operator, respectively. Show that the commutator $[\vec{p} \cdot \vec{r}, H]$ results in the same operator.
- (b) Compute $[(\vec{r} \cdot \vec{p})(\vec{r} \cdot \vec{p}), H]$ and $[(\vec{r} \cdot \vec{p})(\vec{p} \cdot \vec{r}), H]$ for the special case V = 0. Compare both resulting operators by applying them to a plane wave test function $e^{i(\vec{r}\cdot\vec{p}-Et)/\hbar}$.
- (c) Calculate the classical Poisson bracket¹ {r · p, H} and compare to the result of (a). Also compare the fundamental commutators and Poisson brackets [r_i, p_j] and {r_i, p_j}, i, j = 1, 2, 3. What general relation do those comparisons suggest between commutators of operators and Poisson brackets of their classical counterparts?
- (d) For the special case V = 0 calculate the classical Poisson bracket $\{(\vec{r} \cdot \vec{p})^2, H\}$ and compare to the results of (b). Is the conclusion of (c) tenable?

¹We agree to use the definition $\{f, g\} = \sum_{k=1}^{n} \left(\frac{\partial f}{\partial r_k} \frac{\partial g}{\partial p_k} - \frac{\partial f}{\partial p_k} \frac{\partial g}{\partial r_k} \right)$.

[3] Time Evolution of Wave Packet Widths (25 points)

Using the equation of motion for expectation values show that for a free particle of mass m in one dimension the usual variances $(\Delta p)^2 = \langle (p - \langle p \rangle)^2 \rangle$, $(\Delta x)^2 = \langle (x - \langle x \rangle)^2 \rangle$ in momentum and coordinate space have the time dependences

$$(\Delta p)^2(t) = (\Delta p)^2(0) = \text{const.}, \qquad (2)$$

$$(\Delta x)^{2}(t) = (\Delta x)^{2}(0) + \frac{2}{m} \left[\frac{1}{2} \langle xp + px \rangle (0) - \langle x \rangle (0) \langle p \rangle (0) \right] t + \frac{(\Delta p)^{2}(0)}{m^{2}} t^{2}, \quad (3)$$

if they exist.

[4] Once More: Gaussian Wave Packets (25 points)

- (a) Use the result of [3] to calculate $(\Delta x)^2$ and $(\Delta p)^2$ for the propagating Gaussian wave packet from HW 2, problem [1].
- (b) Now calculate $(\Delta x)^2$ and $(\Delta p)^2$ directly from the explicit results of HW 2, problem [1] and compare to (a).