Physics 606 - Spring 2014

Homework 4

Instructor: Rainer J. Fries
Turn in your work by February 18
[1] Commutators in Coordinate and Momentum Space (25 points)
Let $F(\vec{r})$ and $G(\vec{p})$ be two physical quantities as a function of coordinate \vec{r} and momentum \vec{p} respectively. Let F_{p}, G_{p} and F_{r}, G_{r} be the operators representing F and G in momentum and coordinate space respectively, acting on spaces of sufficiently fast falling functions \mathcal{S}_{r} and \mathcal{S}_{p} respectively. Prove that the commutators of F and G in both representations are related by Fourier transformation, i.e.

$$
\begin{equation*}
\left[F_{r}, G_{r}\right] f(\vec{r})=(2 \pi \hbar)^{-3 / 2} \int_{\mathbb{R}^{3}}\left[F_{p}, G_{p}\right] \hat{f}(\vec{p}) e^{\frac{i}{\hbar} \vec{r} \cdot \vec{p}} d^{3} p \tag{1}
\end{equation*}
$$

for any test function $f \in \mathcal{S}_{r}$ with Fourier transform $\hat{f} \in \mathcal{S}_{p}$.
Note: This can easily be generalized to a proof of the statement in I.7.2 in the lecture which makes the same statement for arbitary F, G as long as pairs of conjugate variables are separable (i.e. do not appear in products).
[2] Commutators and Poisson Brackets; Products of Conjugate Variables (25 points)
Let $H=p^{2} / 2 m+V(\vec{r})$ be the Hamilton operator of a system.
(a) Calculate the commutator $[\vec{r} \cdot \vec{p}, H]$ where \vec{r} and \vec{p} are the position and momentum operator, respectively. Show that the commutator $[\vec{p} \cdot \vec{r}, H]$ results in the same operator.
(b) Compute $[(\vec{r} \cdot \vec{p})(\vec{r} \cdot \vec{p}), H]$ and $[(\vec{r} \cdot \vec{p})(\vec{p} \cdot \vec{r}), H]$ for the special case $V=0$. Compare both resulting operators by applying them to a plane wave test function $e^{i(\vec{r} \cdot \vec{p}-E t) / \hbar}$.
(c) Calculate the classical Poisson bracket ${ }^{1}\{\vec{r} \cdot \vec{p}, H\}$ and compare to the result of (a). Also compare the fundamental commutators and Poisson brackets $\left[r_{i}, p_{j}\right]$ and $\left\{r_{i}, p_{j}\right\}, i, j=$ $1,2,3$. What general relation do those comparisons suggest between commutators of operators and Poisson brackets of their classical counterparts?
(d) For the special case $V=0$ calculate the classical Poisson bracket $\left\{(\vec{r} \cdot \vec{p})^{2}, H\right\}$ and compare to the results of (b). Is the conclusion of (c) tenable?

[^0][3] Time Evolution of Wave Packet Widths (25 points)
Using the equation of motion for expectation values show that for a free particle of mass m in one dimension the usual variances $(\Delta p)^{2}=\left\langle(p-\langle p\rangle)^{2}\right\rangle,(\Delta x)^{2}=\left\langle(x-\langle x\rangle)^{2}\right\rangle$ in momentum and coordinate space have the time dependences
\[

$$
\begin{align*}
& (\Delta p)^{2}(t)=(\Delta p)^{2}(0)=\text { const. } \tag{2}\\
& (\Delta x)^{2}(t)=(\Delta x)^{2}(0)+\frac{2}{m}\left[\frac{1}{2}\langle x p+p x\rangle(0)-\langle x\rangle(0)\langle p\rangle(0)\right] t+\frac{(\Delta p)^{2}(0)}{m^{2}} t^{2}, \tag{3}
\end{align*}
$$
\]

if they exist.
[4] Once More: Gaussian Wave Packets (25 points)
(a) Use the result of [3] to calculate $(\Delta x)^{2}$ and $(\Delta p)^{2}$ for the propagating Gaussian wave packet from HW 2, problem [1].
(b) Now calculate $(\Delta x)^{2}$ and $(\Delta p)^{2}$ directly from the explicit results of HW 2, problem [1] and compare to (a).

[^0]: ${ }^{1}$ We agree to use the definition $\{f, g\}=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial r_{k}} \frac{\partial g}{\partial p_{k}}-\frac{\partial f}{\partial p_{k}} \frac{\partial g}{\partial r_{k}}\right)$.

