Physics 606 - Spring 2014

Homework 3

Instructor: Rainer J. Fries
Turn in your work by February 11
[1] Schrödinger Equation in Momentum Space (25 points)
Starting from the Schrödinger equation in coordinate space for a particle of mass m and potential energy $V(\vec{r})$ explicitly show that

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \phi(\vec{p}, t)=\frac{p^{2}}{2 m} \phi(\vec{p}, t)+V\left(-i \hbar \nabla_{p}\right) \phi(\vec{p}, t) \tag{1}
\end{equation*}
$$

where $\phi(\vec{p}, t)$ is the Fourier transformation of a coordinate space solution $\psi(\vec{r}, t)$.
[2] Operator Algebra (25 points)
(a) Let F and G be two operators on a vector space of functions who both commute with their commutator $[F, G]$. Show that for any $n \in \mathbb{N}$

$$
\begin{align*}
{\left[F, G^{n}\right] } & =n G^{n-1}[F, G] \tag{2}\\
{\left[F^{n}, G\right] } & =n F^{n-1}[F, G] \tag{3}
\end{align*}
$$

(b) Prove that the Jacobi identity

$$
\begin{equation*}
[F,[G, H]]+[H,[F, G]]+[G,[H, F]] \tag{4}
\end{equation*}
$$

holds for arbitrary operators F, G, H.
[3] Properties of the Angular Momentum Operator (25 points)
(a) Calculate the commutator $[\vec{L}, T]$ of the angular momentum operator $\vec{L}=\vec{r} \times \vec{p}$ with the kinetic energy operator $T=p^{2} / 2 m$ for a Schrödinger field of mass m both in coordinate and momentum space representation.
(b) Show that the equation of motion for the expectation value of the the angular momentum of a Schrödinger field is

$$
\begin{equation*}
\frac{d}{d t}\langle L\rangle=\langle\vec{r} \times \vec{F}\rangle \tag{5}
\end{equation*}
$$

for a system with potential energy $V(\vec{r})$ where $\vec{F}=-\nabla V(\vec{r})$.
[4] Baker-Campbell-Hausdorff Relations (25 points)
Let F, G be two operators on a vector space of functions.
(a) Prove that

$$
\begin{equation*}
e^{F} G e^{-F}=\sum_{k=0}^{\infty} \frac{1}{k!}[F,[F, \ldots,[F, G]] \ldots] \tag{6}
\end{equation*}
$$

where the \ldots indicate k applications of the commutator with G.
(b) Prove the following simplified Baker-Campbell-Hausdorff formula if F and G both commute with their commutator $[F, G]$:

$$
\begin{equation*}
e^{F} e^{G}=e^{F+G+[F, G] / 2} . \tag{7}
\end{equation*}
$$

