Physics 606 (Quantum Mechanics I) — Spring 2014

Homework 10

Instructor: Rainer J. Fries
Turn in your work by April 22
[1] Some More Commutators of Angular Momentum Operators (20 points)
(a) Compute the commutators $\left[L_{i}, r_{j}\right],\left[L_{i}, p_{j}\right]$ and $\left[L_{i}, K_{j}\right], i=1,2,3$, where L_{i}, r_{i}, p_{i} and K_{i} are the orbital angular momentum, position, momentum, and boost operators, respectively.
(b) For the raising and lowering operators $L_{ \pm}=L_{x} \pm i L_{y}$ compute the commutators $\left[L_{ \pm}, L_{z}\right]$ and $\left[L_{+}, L_{-}\right]$. Show that $L^{2}-L_{z}^{2}=L_{ \pm} L_{\mp} \mp \hbar J_{z}$

[2] Harmonic Oscillator Algebra (40 points)

(a) Calculate the matrix representation of the lowering and raising operators a and a^{\dagger} of the harmonic oscillator with respect to the energy eigenstate basis $|n\rangle, n \in \mathbb{N}$. I.e. calculate the matrix elements $\left\langle n^{\prime}\right| a|n\rangle$, etc.
(b) With the help of (a) determine the normalization factors C_{n}, D_{n}, N_{n} in the following equations from lecture:

$$
\begin{equation*}
a|n\rangle=C_{n}|n-1\rangle \quad a^{\dagger}|n\rangle=D_{n}|n+1\rangle \quad|n\rangle=N_{n}\left(a^{\dagger}\right)^{n}|0\rangle \tag{1}
\end{equation*}
$$

(c) Compute the matrix representation of the position operator \hat{x} with respect to the basis $|n\rangle, n \in \mathbb{N} .{ }^{1}$
(d) Consider the trivial eigenvalue equation $\hat{x}|x\rangle=x|x\rangle$ where \hat{x} is the position operator, and x the position described by the eigenstate $|x\rangle$. Derive the corresponding "matrix equation" that is the eigenvalue equation for the amplitudes $\psi_{n}(x)=\langle n \mid x\rangle$ of the positions in the basis $|n\rangle, n \in \mathbb{N}$.
Hint: Insert a complete set of states.
(e) Of course the $\psi_{n}(x)$ are just the complex conjugates of the coordinate space wave functions of the harmonic oscillator, $\langle x \mid n\rangle$. Show that the eigenvalue problem for the $\psi_{n}(x)$ in (d) is solved by

$$
\begin{equation*}
\psi_{n}(x)=2^{-\frac{n}{2}}(n!)^{-\frac{1}{2}} h_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) \psi_{0}(x) \tag{2}
\end{equation*}
$$

where the $h_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
h_{n+1}(x)-2 x h_{n}(x)+2 n H_{n-1}(x)=0 . \tag{3}
\end{equation*}
$$

[^0](f) Show that the Hermite polynomials satisfy the recurrence relations from (e), so that $h_{n}(x)=C(x) H_{n}(x)$.
Hint: You can, e.g., use the relation you proved in HW VII, [1](c).
Note: You can get the remaining unknowns $C(x) \psi_{0}(x)$ which contain the Gaussian and the normalization factor from the closure relation, but you don't need to do that here.

[3] Free Particle Solutions in Spherical Coordinates (40 points)

Consider a free particle of mass m. Since L^{2} and L_{z} commute with the free Hamilton operator H, you can find simultaneous eigenfunctions $\psi(\vec{r})=\psi(r, \theta, \phi)$ for H, L^{2} and L_{z}.
(a) The ansatz $\psi_{l, m}(r, \theta, \phi)=C R(r) Y_{l}^{m}(\theta, \phi)$, where the $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics from HW IX, [2], obviously provides eigenfunctions of L^{2} and L_{z} with eigenvalues $\hbar^{2} l(l+1)$ and $\hbar m$. Show that the "radial" differential equation that $R(r)$ needs to satisfy to make $\psi_{l, m}$ an eigenfunction of H as well is

$$
\begin{equation*}
\frac{d^{2} R}{d \rho^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}+\left[1-\frac{l(l+1)}{\rho^{2}}\right] R=0 \tag{4}
\end{equation*}
$$

where we have introduced the dimensionless radial coordinate $\rho=r \sqrt{2 m E} / \hbar$.
(b) The radial equation above is also called the spherical Bessel equation. Its regular solutions are the spherical Bessel functions j_{l} which are in integral representation defined as

$$
\begin{equation*}
j_{l}(\rho)=\frac{\rho^{l}}{2^{l+1} l!} \int_{-1}^{1} e^{i \rho s}\left(1-s^{2}\right)^{l} d s \tag{5}
\end{equation*}
$$

(We will not be interested in its singular solutions which are the spherical Neumann functions n_{l}). Show that the j_{l} given above satisfy the radial equation from (a).
(c) Show that

$$
\begin{equation*}
j_{l}(z)=(-1)^{l} \rho^{l}\left(\frac{d}{\rho d \rho}\right)^{l} \frac{\sin \rho}{\rho} . \tag{6}
\end{equation*}
$$

Give the first 3 spherical Bessel functions $(l=0,1,2)$ explicitly and graph them.
(d) We already know that plane waves are eigenfunctions of H that are also simultaneously eigenfunctions for the components of the momentum vector \vec{p}. Assume a particle in a stationary plane wave $e^{i \vec{k} \cdot \vec{r}}$ with wave vector $\vec{k}=k \hat{e}_{z}$ pointing in z-direction. Derive an expression that describes this plane wave in terms of angular momentum eigenstates.

[^0]:

