Precise β branching ratios in 34 Ar from β- γ coincidences

V. E. Iacob, J. C. Hardy, and V. Golovko

As part of our program to test the Standard Model *via* the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1] we have measured the β -branching ratios in the decay of ³⁴Ar with the aim of extracting a precise *ft* value (0.1% or better) for the superallowed $0^+ \rightarrow 0^+$ β branch. The *ft* value is determined from three experimental quantities: the half-life, branching ratio and Q_{EC} value. For the experimental results to contribute significantly to the CKM unitarity test, the required precision for each quantity must be better than 0.1%, making the experiment very demanding.

In the case of 34 Ar, precise measurements now exist for the Q_{EC} value [2] and half-life [3], which lead to contributions to the ft-value uncertainty of 0.04% and 0.05% respectively. However, the branching ratio for the superallowed transition is only known to 0.26% based on a measurement published more than 30 years ago [4]. Thus, a more precise measurement of the branching ratio would add this nucleus to the list of superallowed β emitters whose corrected π values contribute to tests of CVC and CKM unitarity [5]. More important still is that the calculated correction for isospin symmetry breaking [6] in the 34 Ar decay is larger than the comparable correction for any other well known transition with A<40, where the nuclear models used in the calculation are expected to be the most reliable. Conformity of the corrected π value for 34 Ar with the average result from the other cases [5] would provide strong confirmation of the validity of the correction calculations.

The 34 Ar radioactive beam was produced from the 35 Cl(p,2n) reaction with the primary beam at 30A MeV impinging on a liquid-nitrogen-cooled gas target at 1.6 atm. An 34 Ar beam at 26A MeV was separated by the Momentum Achromat Recoil Spectrometer (MARS) [7]. The beam exited the vacuum chamber through a thin Kapton window and then passed through a 0.3-mm-thick plastic scintillator and a series of Al degraders, which were adjusted to ensure the implantation of the 34 Ar nuclei at the center of a 76-µm-thick aluminized Mylar tape, part of our fast tape transport system. With an 34 Ar beam intensity of about 3×10^4 particles/s, we collected a radioactive sample (> 99.7% pure) for 2 s, then turned off the beam and transported the activity in 180 ms to a well-shielded counting location 90 cm away from the beam line. At the counting location the collected sample stopped between a 70% HPGe detector for γ rays and a 1-mm-thick plastic scintillator for β 's, the former being 151 mm away on one side of the source and the latter 5 mm away on the opposite side. We then recorded β singles and β - γ coincidences for a 2-s period before repeating the collect-move-count cycle. These cycles were repeated until the desired statistics were achieved.

The total γ -ray spectrum we obtained for the decay of ³⁴Ar is presented in Figure 1. Even though only about 5% of the ³⁴Ar decays populate excited states in ³⁴Cl, the relatively weak γ -rays from the deexcitation of these states appear as prominent peaks in this spectrum. The only notable peak not related to the ³⁴Ar decay is the 1779 keV peak, which was generated by neutron activation of the Al structural materials surrounding the detectors.

From our data, we could obtain the β -branching ratio BR_i for a particular transition populating state i, which decays by emitting γ ray, γ_i . If the total number of β singles is N_{β} and the total number of β - γ coincidences measured in the γ_i peak is $N_{\beta\gamma_i}$, then the branching ratio BR_i is given by

$$BR_i = \frac{N_{\beta\gamma i}}{N_{\beta}\varepsilon_{\gamma i}}k, \qquad (1)$$

where $\varepsilon_{\gamma i}$ is the detector efficiency for γ ray, γ_i , and k is a small correction factor (*i.e.* k = ~1) that, among other things, takes into account the differences in the β -detector efficiency for the different transitions participating in ³⁴Ar decay. This relation highlights the importance of a precise absolute efficiency calibration for the γ -ray detector and a reasonable knowledge of relative efficiencies in the beta detector. Our HPGe absolute efficiency is accurately known (to ±0.2% for 50-1400 keV and ±0.4% up to 3500keV) from source measurements and Monte Carlo calculations [8]. The relative efficiency as a function of β energy in the plastic scintillator was determined by Monte Carlo calculations using the DOSRZNRC code from the EGS package [9] and checked by comparison with conversion-electron sources and with ²²Mg β -decay data [10].

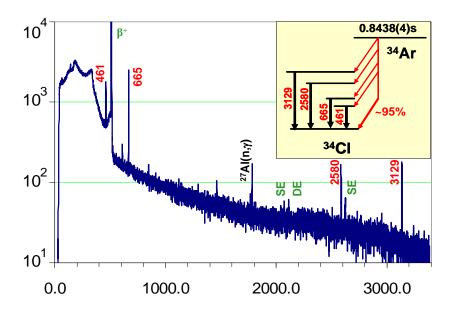
The components of the correction factor k have been described in detail in Ref. [11]. In the present measurement, they are:

- differences in the total β-detection efficiency induced by the low-energy threshold set in the plastic-scintillator electronics; since the threshold is fixed, a different (small) fraction of the β's will be lost for transitions with different β end-point energies. This contributes 0.2% to k:
- dead time corrections in the β singles and β - γ coincidence channels, which give a combined effect of 0.5%;
- real coincidence summing of the positron-annihilation radiation with the observed γ rays, which accounts for 0.1%; and
- random coincidence summing, a 0.3% effect.

Including all these small corrections we determine the sum of all branching ratios for transitions populating excited states in ³⁴Cl to be:

$$\sum BR^* = 5.64(8)\% \tag{2}$$

These branches are all Gamow-Teller in character, and it is the ground-state transition that is the superallowed one. Subtracting the sum of excited-state transitions from 100%, we obtain the superallowed branching ratio to be:


$$BR_{GS} = 94.36(8)\%$$
 (3)

Although the uncertainty quoted in Eq. (2) on the measured sum of branching ratios is $\pm 1.4\%$, because of the subtraction from 100%, the superallowed branch uncertainty in Eq. (3) is $\pm 0.08\%$. The former was principally determined by counting statistics on these relatively weak transitions. In detail, the error budget comprises:

• the peak-areas counting statistics ($\pm 1.3\%$);

- the uncertainty in ε_{γ} (±0.7%), which is dominated here by the uncertainty in the position of the tape along the detector axis (±0.5mm); and
- the uncertainty in the relative efficiency of the beta detector ($\pm 0.3\%$).

Using the branching ratio in Eq. (3) for the superallowed branch together with the known half life [3] and Q_{EC} value [2], we find a corrected π value of 3072.3(32) s. This is in good agreement with the current world average, $\pi = 3073.9(8)$ s [5]. However, our result should still be considered as preliminary, since we want to confirm the techniques employed here with a similar measurement of the β -decay of ^{10}C , where the population of the 718-keV exited state in ^{10}B must yield a branching ratio of exactly 100%. Currently we are processing the data from a ^{10}C measurement and, if the results agree with expectations and confirm our approach, we will publish the ^{34}Ar branching ratio very shortly.

Figure 1. Spectrum of β -delayed γ -rays observed in coincidence with positrons following the decay of ³⁴Ar. The decay scheme is shown in the inset.

- [1] J. C. Hardy *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2006-2007), p. I-42.
- [2] F. Herfurth et al., Eur. Phys. J. A 15, 17 (2002).
- [3] V. E. Iacob et al., Phys. Rev. C 74, 055502 (2006).
- [4] J. C. Hardy et al., Nucl. Phys. A223, 157 (1974).
- [5] J. C. Hardy and I. S. Towner, Phys. Rev.C 71, 055501 (2005); Phys. Rev. Lett. 94, 092502 (2005).

- [6] I. S. Towner and J. C. Hardy, Phys. Rev. C 66, 035501 (2002).
- [7] R. E. Tribble et al., Nucl. Phys. A701, 278 (2002).
- [8] J.C. Hardy *et al*, Applied Radiation and Isotopes **56**, 65 (2002); R.G. Helmer *et al*, Nucl. Instrum. Methods Phys. Res. **A511**, 360 (2003) and Appl. Radiat. Isot. **60**, 173 (2004).
- [9] NRCC Report PIRS-701 and www.irs.inms.nrc.ca/inms/irs/EGSnrc/EGSnrc
- [10] V. E. Iacob et al., 2004 Fall Meeting of the APS DNP, Oct 28 30, Chicago IL.
- [11] V. E. Iacob et al., Phys. Rev. C 74, 015501 (2006).