The Structure of ²³Al and the Consequences on the ²²Mg (p, γ) ²³Al Stellar Reaction Rate

Y. Zhai, V.E. Iacob, T. Al-Abdullah, C. Fu, J.C. Hardy, N. Nica, H.I. Park, G. Tabacaru, C.A. Gagliardi, L. Trache, and R.E. Tribble

There is interest in the structure of ²³Al due to its nuclear astrophysics significance [1,2]. The ground state spin and parity for ²³Al is uncertain, with assignments that include $1/2^+$, $3/2^+$ and $5/2^+$. Currently the NNDC data base gives $3/2^+$ for the ²³Al ground state. The mirror nucleus ²³Ne has $J^{\pi} = 5/2^+$ for its ground state. Recently it was claimed [3-5] that proton rich ²³Al is a halo nucleus. That can be explained only if the last proton in the $2s_{1/2}$ orbital, not $1d_{5/2}$ (level inversion), i.e. $J^{\pi} = is 1/2^+$ for ²³Al. Using $1/2^+$ instead of $5/2^+$, we calculate the astrophysical S-factor and stellar reaction rate for ²²Mg (p, γ)²³Al and find an increase of 30-50 times over the current estimate for the temperature range T₉=0.1-0.3. This results in a significant depletion of ²²Mg before it β decays into ²²Na and, if confirmed, could explain the non-observation of the 1.275 MeV γ -ray from ²²Na which is the last step of the reaction chain which is named the hot NeNa cycle: ²⁰Ne(p, γ)²¹Na(p, γ)²²Mg(β ,v)²²Na. Our ²³Al β -decay measurement [6] will be used to determine the J^{\pi} of the ground state of ²³Al.

In 2005, we had three experiments to produce and study ²³Al, beginning with production tests at two different ²⁴Mg beam energies, 45 and 48 MeV/u, respectively. At both energies ²³Al was produced and separated, but the latter was found more productive. Therefore, we produced ^{23}Al and studied its β decay using a 48 MeV/nucleon ²⁴Mg beam from the K500 cyclotron via the ²⁴Mg(p, 2n)²³Al reaction on a hydrogen gas cryogenic target cell cooled by LN₂. The reaction products and projectiles entered the MARS recoil separator where the ²⁴Mg beam was filtered out and the fully stripped reaction products were spatially separated from one another, leaving a relatively pure ²³Al beam of about 4000 pps at the extraction slits in the MARS focal plane. Its β-decay was further studied using the fast tape transport system. This was the first time pure and intense ²³Al samples were produced and separated. This ²³Al beam came out of the vacuum system by passing through a 50 µm thick Kapton window, a 0.3 mm thick BC-104 scintillator, a dummy tape and a stack of aluminum degraders (30.5 mils). A 75-um thick aluminized Mylar tape on the fast tape-transport system was used to collect ²³Al. Because the ranges of impurities in the beam are different from that of 23 Al, a pure 23 Al sample was collected on the tape. In our measurement, we collected ²³Al on the tape for 1 second. Then we shifted the RF phase to stop the ²⁴Mg beam. Following this we moved the ²³Al sample in 177 ms with the tape transport system to a counting station which consists of a HPGe γ detector and a β detector. β and β - γ coincidence data were recorded for a predetermined counting period of 3.2 seconds. This cycle was precisely clock controlled and was repeated continuously. The sample was positioned between the HPGe γ -ray detector and a 1-mm-thick BC404 plastic scintillator used to detect β particles. The BC404 was located 3 mm from the sample, while the HPGe was about 4.9 cm away. Time-tagged coincidence data were stored event by event in the computer. This experimental setup [7] is a typical one for measuring β - γ coincidences except that the HPGe detector was closer than usual. In two different parts of the experiment, we first measured the γ energy range 0-4 MeV with good statistics (Fig. 1a), then we measured γ energy range 0-9 MeV for about 20 hours (Fig. 1b). We also separated pure samples of ²⁴Al, by tuning MARS for this product, and

did a similar β - γ measurement. We use its known gamma-rays up to $E_{\gamma}=7.8$ MeV for energy and efficiency calibration in the range $E_{\gamma}=4-9$ MeV.

The ground and first three excited states of ²³Mg have $J^{\pi}=3/2^+$, $5/2^+$, $7/2^+$ and $1/2^+$, respectively. All of these states are easily accessible energetically to β -decay from ²³Al. Depending on which states are actually populated by allowed GT transitions – as determined by log*ft* values – the spin and parity of the parent ground state can be unambiguously determined. From the measured β singles and β - γ coincidence decay spectrum (Fig. 1) we can get the ²³Al β -decay scheme and the branching ratios. We find that it populates directly the $3/2^+$, $5/2^+$ and $7/2^+$ states, but not the $1/2^+$ state. Combined with GT transition rules, we clearly determine that ²³Al ground state spin and parity is $J^{\pi}=5/2^+$. We found preliminary β -branching ratios and log*ft* values for 14 states in total. It so appears that the larger capture rate implied by the lower spin value of ²³Al will not explain the missing cosmic 1275 keV cosmic γ -ray.

The future research plan is the following. An additional experiment at TAMU is going to add a BGO shield to the present HPGe γ -ray detector to reduce background in the β - γ decay spectrum of ²³Al and increase the ability to detect high energy γ rays. We also need better statistics for the γ energy range 4-9 MeV. So we can get more precise ²³Al β - γ decay energy level scheme, β & γ -branching ratio and a precise ²³Al half life.

Figure 1.²³Al β - γ coincidence spectrum.

[1] J. Jose, A. Coc, M. Hernanz, Astroph. J. 520, 347(1999).

- [2] C. Rolfs and W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, 1988).
- [3] X.Z. Cai et al., Phys. Rev. C 65, 024610(2002).
- [4] H.-Y. Zhang et al., Chin. Phys. Lett. 19, 1599(2002).
- [5] D.Q. Fang et al., Phys. Rev. C 61, 064311(2000).
- [6] Kai Siegbahn, Alpha, Beta and Gamma Ray Spectroscopy, vol. 2, (American Elsevier publishing company Inc., New York 1974).
- [7] V.E. Iacob *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2005-2006), p.I-11.