Global Analysis of Muon Decay Measurements

C.A. Gagliardi, R.E. Tribble, and N.J. Williams

We have performed a new global analysis of muon decay measurements to establish modelindependent limits on the space-time structure of the muon decay matrix element [1]. The most recent previous global analysis had been performed in 1988 [2]. Our analysis included new measurements of the Michel parameters ρ [3] and δ [4] by the TWIST Collaboration, as well as new measurements of the transverse polarization parameters η , η'' , α' , and β' [5]. We find new limits on the scalar, vector, and tensor couplings of right- and left-handed muons to right- and left-handed electrons. These couplings are given by $g^{\gamma}_{\epsilon\mu}$, where ϵ and μ represent the chiralities of the electron and muon, respectively. In the standard model, $g^{\gamma}_{LL} = 1$, and all the other coupling constants are zero.

Table I shows the results. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous analyses, primarily due to the inclusion of the new ρ and δ measurements. The limits on other possible non-standard model interactions are comparable to those in previous analyses. The value of the Michel parameter η found in the global analysis is -0.0036 ± 0.0069. This is slightly more precise than the value found in a more restrictive analysis of the transverse polarization parameters [5], and nearly a factor of two more precise than the previous accepted value [6]. All three of the recent measurements [3-5] play important roles in reducing the uncertainty in η . This reduces the contribution of η to the uncertainty in the Fermi coupling constant G_F to $\Delta G_F/G_F = 6.7 \times 10^{-5}$.

	Ref. [2]	Present Work
$ g^{S}_{RR} $	< 0.066	< 0.067
$ g^{V}_{RR} $	< 0.033	< 0.034
$ g^{S}_{LR} $	< 0.125	< 0.088
$ g^{V}_{LR} $	< 0.060	< 0.036
$ g^{T}_{LR} $	< 0.036	< 0.025
$ g^{S}_{RL} $	< 0.424	< 0.417
$ g_{RL}^{V} $	< 0.110	< 0.104
$ g_{RL}^{T} $	< 0.122	< 0.104
$ g^{S}_{LL} $	< 0.550	<0.550
$ g^{V}_{LL} $	>0.960	>0.960

 Table I. 90% confidence limits on the muon decay coupling constants.

- [1] C.A. Gagliardi et al., Phys. Rev. D 72, 073002 (2005)
- [2] B. Balke *et al.*, Phys. Rev. D 37, 587 (1988); W. Fetscher and H.-J. Gerber, in S. Eidelman *et al.*, Phys. Lett. B 592, 1 (2004).
- [3] J.R. Musser et al. (TWIST Collaboration), Phys. Rev. Lett. 94, 101805 (2005).
- [4] A. Gaponenko et al. (TWIST Collaboration), Phys. Rev. D 71, 071101R (2005).
- [5] N. Danneberg et al., Phys. Rev. Lett. 94, 021802 (2005).
- [6] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).