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 Studies of isoscalar giant monopole and 
dipole resonances are of particular interest since 
the centroid of their strength function is directly 
related to the nuclear matter incompressibility 
coefficient . Currently, Hartree-Fock (HF) 
based random phase approximation (RPA) 
calculation for isoscalar giant monopole 
resonance (ISGMR) reproduce the experimental 
data for effective interaction associated with 
incompressibility  MeV. The 

centroid energies  of isoscalar giant dipole 

resonances (ISGDR) provides an independent 
source of information for the incompressibility 
coefficient . We would like to remark here 
that, although not always stated in the literature, 
actual implementation of HF-RPA are not fully 
self-consistent. One usually makes one or more 
of the following approximations: 
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1. Neglecting the two-body Coulomb and spin-
orbit term in particle-hole interaction V  ph

2. Approximation momentum dependent 
parts in V  ph

3. Limiting the p  space in a discretized 

calculation by a cut-off energy  
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4. Introducing a smearing parameter (i.e., a 
Lorenzian width Γ ) 2/

5. Numerical accuracy 
 

Each of these approximations induces 
spurious state mixing (SSM), and may 
significantly affect the ISGDR centroid energy. 
In this contribution we shall present fully self-
consistent HF-RPA results for the ISGDR 
strength function and the transition density for 

the spurious state in case of 80 . We also 

investigate the effects of some of the 
approximations as listed above. 
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 To perform a fully self-consistent 
calculation, one starts with adopting a viable 
form for an effective nucleon-nucleon 
interaction, , and carries out HF calculation 

for the ground state of the nucleus. Then, RPA 
calculation is done with V  derived from the 

interaction . The RPA Green’s function G  

can be expressed in terms of free Particle-hole 
Green’s function G  in the matrix form as 
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For a scattering operator , the 

strength function and the transition density are 
given by 
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To calculate  and  in case of 

ISGMR we use 
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and that for ISGDR we use 
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To project out the spurious state mixing in 
ISGDR we use the operator 
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where  is the spurious state transition 

density. 
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 In what follows, we present our results 
obtained with 
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where , , and t  are taken to be -1100 

MeVfm

1=α 0t 3
3, and 16000 MeV fm3(α+1), respectively. 

The single-particle continuum states are treated 
exactly. Thus, no approximations, as listed 
above, are made, and the calculation is fully 
self-consistent. 
 We obtain numerical solutions for HF 
equation over a grid  of 0.04 fm in the 

coordinate space. We use the same grid size for 
the evaluation of the Green’s function G  (Eq. 

1) and dimension, , of the RPA matrix. 

 is taken to be 300. 
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 We perform a fully self-consistent 
(smearing parameter Γ ) calculation for 
ISGDR strength function. We find that the 
strength function for the  is exactly identical 

to that for the operator . In Fig. 1 we display 

our results for S(E) in case of  for Γ  
MeV. We see that with the strength function for 

 and  is practically the same. For Γ  

MeV (not shown here), we find that, due to 
SSM, the  and  response are noticeably 

different for  MeV. 
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From the response for  we find the 

position of spurious peak (  is 0.09 MeV. It 

is worth mentioning that these results do not 
change at all even if the calculations are 
repeated with quadrupole precision instead of 
double precision as used above. 
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In Fig. 2 we compare collective 
transition density ∝  with the 

corresponding one obtained microscopically 
using RPA. As can be seen from the figure, it is 
hard to distinguish between the microscopic and 
collective transition densities. 
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Figure 1: Self-consistent HF-RPA result of ISGDR 
strength function for (dotted), (long dashed) and 

(solid line) in case  nucleus. 

1Fη

 
In Table I we list the values of , 

,and  obtained for various combinations 

of the  and . We see from the table that 

the spurious state  gets pushed  away  from  zero 
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Figure 2: Comparison of the microscopic (dashed line) and 
collective (solid line) transition densities for the spurious 
state. 
 
when various numerical approximations are 
made, leading to SSM. We infer from the table 
that the ISGMR and ISGDR do not change 
significantly for  MeV. 1≤ssE
 
Table I: 

Γ
 

HFr)(δ
 

RPAr)(δ
 

RPAN
 

ssE  0E  1E  

0 0.04 0.04 300 0.09 29.70 42.25 
0 0.04 0.24 50 <0 29.57 42.07 
0 0.08 0.08 150 0.19 29.62 42.21 
0 0.08 0.24 50 <0 29.52 42.03 
3 0.08 0.08 150 0.88 29.74 42.75 
3 0.08 0.24 50 0.03 29.64 42.04 

 

We further study the influence of  

on the position of spurious peak. For this 
purpose, we carry out the calculation of unbound 
state by confining the nucleus in a large box. 
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In Fig. 3 we plot the variation of  

with  for the calculation carried out using 

the box of 45fm. 
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Figure 3: Variation of  as a function of . ssE
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