Isoscalar Giant Resonances and Nuclear Incompressibility

B. K. Agrawal and S. Shlomo

We have illustrated so far the possible consequences of various numerical approximation and violation of self-consistency on centroid energies for isoscalar giant monopole (ISGMR) and dipole (ISGDR) resonances. We showed that renormalization of the particle-hole interaction V_{ph} may not be a plausible way to restore self-consistency. Because, by renormalizing V_{ph} one can shift the spurious state to close to zero as desired, but at the same time this changes significantly the incompressibility associated with V_{ph} . Here we report (1) our numerically accurate and fully self-consistent results for the centroid energy E0 for ISGMR and E1 for ISGDR obtained using a class of simplified Skyrme type effective nucleon-nucleon interaction taken as

$$V_{12} = \delta(r_1 - r_2)[t_0 + \frac{1}{6}t_3\rho^{\alpha}(\frac{r_1 + r_2}{2})]$$
(1)

leading to

$$V_{ph} = \delta(r_1 - r_2) [\frac{3}{4}t_0 + \frac{3}{8}t_3\rho]$$
(2)

The parameter t_0 and t_3 are determined by fixing the values of Fermi momenta (k_f) and the binding energy per nucleon (E/A) for nuclear matter. One thus obtains

$$t_{0} = -\frac{4}{15\alpha} \left(\frac{3\pi^{2}}{2k_{f}^{3}}\right)$$

$$[(3\alpha + 1)\frac{\hbar^{2}}{m}k_{f}^{2} - 10(\alpha + 1)\frac{E}{A}]$$

$$t_{3} = \frac{8}{5\alpha} \left(\frac{3\pi^{2}}{2k_{f}^{3}}\right)^{(\alpha+1)} \left(\frac{\hbar^{2}}{m}k_{f}^{2} - 10\frac{E}{A}\right)$$

We have tabulated below the values of t_0 , t_3 , and the nuclear matter incompressibility

coefficient
$$K_{nm}$$
 for several values of \forall ,
taking $\frac{E}{A} = -16$ MeV and $k_f = 1.333$ fm⁻¹
 $\rho_0 = 0.16$ fm⁻³.

As expected, we find that K_{mm} increases with \forall . We use these values of \forall , t_0 , and t_3 to calculate the ISGMR and ISGDR strength functions.

Тя	ble	1:

\forall	t_0	t ₃	K _{nm}
1/6	-2972.32	19031.59	201.16
1/3	-1803.77	12914.92	236.22
1/2	-1414.25	11685.50	271.28
2/3	-1219.49	11894.75	306.33
5/6	-1102.64	12914.92	341.39
1	-1024.73	14606.84	376.45

In Fig. 1 we display the variation of square of centroid energy (M_1 / M_0) as a function of K_{nm} . Here, M_1 and M_0 are the zeroth and the first moments of the strength function. We see that for both the ISGMR and ISGDR, square of centroid energy increases more linearly with K_{nm} .

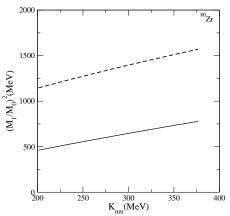


Figure 1: Variation of square of centroid energy of the ISGMR (solid line) and the ISGDR (dashed line) with K_{nm} for ⁸⁰Zr.

References

[1] B. K. Agrawal, S. Shlomo, and A. I. Sanzhur, to be published.