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We study the process of boiling up 

(cavitation) in an asymmetric nuclear matter. 
The necessary condition for boiling is the 
equilibrium between the liquid and the saturated 
vapor phases. However, the boiling as a process 
means also the generation and the growth of the 
vapor phase (vapor bubbles) inside the liquid 
phase as a result of the heterophase fluctuations. 
In fact, the boiling can start in a metastable 
phase (overheated or extended liquid) only. If 
the pressure P0 and the temperature T  provide a 

saturation of the vapor phase in the case of plane 
liquid-vapor boundary surface, the generation of 
the critical vapor bubbles of radius , which 

are in a thermodynamical equilibrium with the 
liquid, starts at higher temperature T . 

The corresponding equilibrium condition for the 
chemical potentials in an asymmetric nuclear 
matter reads 
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where  is the chemical potential of the 

nucleon (q=n for neutron and q=p for proton), X 
is the asymmetry parameter defined as 
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nρ  and  are the neutron and proton densities, 

respectively. The indices “liq” and “vap” in Eq. 
(1) denote the liquid and vapor phases, 
respectively, and ∆  is the capillary 
pressure due to the vapor bubble of radius  
where  is the surface tension coefficient. A 

solution to Eq. (1) allows us to obtain the critical 
radius  of the vapor bubble as a function of 

the overheating temperature  for fixed values 
of P
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Using the temperature dependent 
Thomas-Fermi approximation [1] and a Skyrme-
type force as the effective nucleon-nucleon 
interaction, we have solved the equilibrium 
equations (1) numerically. The dependence of 
the critical radius  on the overheating 

temperature  for pressure P
critR
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0 = 0.01 
MeV/fm3 and asymmetry parameters , 

 and  is presented in Fig. 1 

(we have used here and below  
MeV/fm
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R

2). We point out the increase of the 
critical radius  with the asymmetry 

parameters .  

This is mainly due to the increase of the boiling 
temperature  with the decrease of asymmetry 

parameter (see Ref. [1]). 

 
Figure 1: Temperature dependence of the critical radius 
Rcrit for three cases of the asymmetry parameter X=0, 
X=0.1, and X=0.2. 
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The generation of the vapor bubble of arbitrary 
radius  is subsidized by a variation of the free 
energy  which is given by  
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Figure 2 shows the dependence of the free 
energy  on the vapor bubble radius R for 

certain values of parameters T
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0=5.8 MeV, )T = 
1.2 MeV, and . The maximum of 

 is located at  and its position 

is shifted to smaller values of  with an 

increase of the overheating temperature )T. The 
bubble radius  is the critical point for the 

metastable phase in the following sense: to start 
the boiling up, i.e., to start the infinite growth of 
size of the bubbles, the system must pass 
through the barrier of  to reach the 

region of . 
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Figure 2: Dependence of the variation of free energy )F(R) 
of metastable liquid on the radius R of the vapor bubble. 
 
 
 
 

To evaluate the time evolution of the bubble 
radius R beyond the barrier at , one 

needs to know the equation of motion for the 
collective variable  We have studied this 

problem using the kinetic approach to the 
nuclear Fermi liquid [2]. Starting from the 
collisional kinetic equation, we have derived the 
following non-Markovian equation of motion for 

 without restrictions on the amplitude of 
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where  is the mass coefficient, ϑ is the 

relaxation time and  is the memory 

kernel. We have evaluated both transport 
coefficients  and  assuming an 

irrotational motion of the Fermi liquid and 
taking into account the Fermi-surface distortion 
effects. Near the top of the barrier , the 
solution to Eq. (3) takes the following general 
form 
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The form of  given by Eq. (4) means that the 
growth of bubble size is accompanied by the 
characteristic oscillations of radius . These 
oscillations are due to the memory integral in 
Eq. (3). The characteristic energy,  the 
damping parameter,  and the instability 

growth rate parameter, 

R∆
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,Γ
ζ , depend on the 

relaxation time ϑ and the critical radius  In 

Fig. 3 we show the dependence of the instability 
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growth rate parameter ,ζ  the energy of 

eigenvibrations, , and the damping parameter, E

E Γ

 

 
Figure 3: Dependence upon relaxation time of the 
characteristic energy and width of oscillations (solid 
lines) and the instability growth rate parameter (dashed 
line). 
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∋, on the relaxation time ϑ. The critical radius 
 was taken the same as in Fig.  2.  As 

seen from Fig. 3, the characteristic oscillations 
disappear in the short collision regime , 
where the collective motion becomes 
Markovian. We point out that both the 
eigenenergy  and the damping parameter ∋ 
depend on the temperature Τ  This fact can be 

used for an independent detection of the first 
order phase transition temperature  in hot 

nuclei. 
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