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 We study the structure of the isoscalar 
giant dipole resonance (ISGDR) and its low-
lying satellite within the extended fluid dynamic 
approach. The giant multipole resonances, which 
take up a main part of the energy-weighted sum 
rule (EWSR), can be successfully described 
using the irrotational fluid dynamics [1]. 
However, microscopic RPA analysis of flow 
patterns of the low-lying collective states shows 
strong rotational components. We show that 
inclusion of rotational (vortex) flow in the fluid 
dynamic approach generates the low-lying 
satellite of the ISGDR and leads to a decrease of 
energy of the main resonance. 
 Starting from the collisionless kinetic 
theory, we reduce the kinetic equation for the 
Wigner distribution function to the equation of 
motion for the displacement field , 

assuming the following general form of , 
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where φ (r,t) and A(r,t) are the unknown scalar 

and vector fields and the coefficient  
determines the relative contribution in the case 
of vortex motion. We show that in the case of 
eigenvibrations with  (r,t) , the 

displacement field satisfies the following 
equation of motion 
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Here,  is the pressure tensor αβδP
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K is the incompressibility and  is the coupling 

constant which depends on the Landau’s 
parameters F

µ

l in the interaction amplitude. In the 
case of isotropic interaction amplitude, one has 
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where ,F is the Fermi energy and the 
dimensionless zero-sound velocity s is derived 
by the following Landau’s dispersion equation 
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The term multiplied by  in Eq. (3) is due to 

the dynamical distortion of the Fermi surface. 
We point out that, in contrast to the traditional 
fluid dynamic approaches, Eqs. (2) with  

from Eq. (3) does not imply any restriction on 
the multipolarity of the Fermi surface distortion. 
However, the solution of Eq. (2) requires the 
solution of the Landau’s dispersion equation (5) 
for the dimensionless sound velocity s. 
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 In the case of sharp nuclear surface, the 
scalar and vector fields in Eq. (1) take the forms 

φ (r) = ∇ (qLj ||r)YLM (Σr), 

A(r) = (qLj×∇ ζr)YLLM(Σr). 
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Both wave numbers q|| and  are connected by 

following relation q 2
|| . 

The wave numbers q
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|| and  and the vorticity 

parameter  in Eq. (1) can be evaluated 
using the boundary condition. The boundary 
condition implies that the force 

 acting on the free surface 

of the nucleus must vanish. This leads to the 
conditions 

αββα δr)

 n θ F ∗ = 0, 
 0 Rr =

 n x F ∗ = 0, (6) 
 0 Rr =

where R0 is the radius of the nucleus and n is the 
unit vector normal to the nuclear surface. 
 We solved Eqs. (2) and (6) for the 
dipole mode Lπ = 1- and evaluated the 
eigenenergy  and the vorticity parameter  
for a few lower excited states, including the 
ISGDR. The coupling constant  was derived 

from Eqs. (4) and (5) using F

ωh κ

µ

ωh
0=0.2. The lowest 

1- state occurs at zero energy  and 

corresponds to the uniform translation of the 

nucleus. The energy weighted sum rule is 
mainly exhausted by the next two states which 
are the low-lying satellite (1

0=spur

- pygmy resonance) 
and the isoscalar giant dipole resonance. The 
energy of both states, h  and , 

decreases as A
satω

satωh−

ISGDRωh
-1/3 with particle number A. 

However, the splitting energy 

E∆ = h  ISGDRω

 
varies slightly with A. We show that the 
contribution of the vortex motion is 
significant for both the ISGDR and its low-
lying satellite. We point out also that the 
vorticity of the displacement field leads to 
an increase of the collective mass parameter 
of the ISGDR lowering its eigenenergy 

. ISGDRωh
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