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Asymptotic normalization coefficients 
(ANC), defining the normalization of the tail of 
nuclear bound-state wave functions projected 
onto the two-body channels, play an important 
role in nuclear reaction and structure theory. In 
our previous work, we have demonstrated that 
ANCs can be successfully used as normalization 
coefficients for the nonresonant capture 
amplitudes in the R matrix approach [1]. The 
purpose of this work is to demonstrate in the R 
matrix approach that ANCs can be used to put 
limits on the value of the radiative width of a 
resonance decaying to a bound state with known 
ANC. 

Let us consider proton radiative capture 
to a bound state through an isolated single-
channel resonance with the proton partial width 
Γ p. In the R matrix method, the radiative width 
of the resonance decaying to the bound state is 
given by 
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λ  is the kinematical factor, )(r
il

ψ  is the 

proton-target standing wave describing the 
resonance in the nuclear interior; is the 

outgoing spherical wave,  is the proton-target 
relative velocity in the initial channel,  is the 

solid-sphere scattering phase shift,  is 

the  bound-state radial wave function which at 
 behaves as 
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C is the ANC of the bound state, W  is 

the Whittaker function, 
−η

η  is the bound-state 

Coulomb parameter l  and l  are the resonance 

and bound-state orbital angular momenta,  is 
the multipolarity of the transition from the 
resonance to the bound state, and  is the 

channel radius in the R matrix method. 

 and  are the internal and 

external contributions to the radiative width. In 
the R matrix, for  the resonant scattering 

wave function 
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ψ  is real, while for  it 

is complex because it is given by the outgoing 

spherical wave. Hence,  is real and 

 is complex. Then, (Im  

gives a lower limit for the radiative width. If the 
bound state is loosely bound, the external 
contribution to the resonance width dominates. 

Then, if the signs of  and 

 are the same, |  provides 

an upper limit of the radiative width. Thus, the 
knowledge of the ANC and proton partial width 
would be enough to estimate the limits of the 
radiative widths. 
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We demonstrate this for the radiative 
widths of the first two resonances in 17F. The 
parameters of the second resonance are 

, energy  MeV, proton 

partial width Γ  keV. This resonance 

decays entirely to the ground state 1  

with binding energy  MeV. The 

measured radiative width is Γ  

eV [2]. The ANC for the ground state of 17  
has been determined in our work [2] from 

:  fm . Using 

this ANC, we were able to reproduce the 
experimental low-energy astrophysical factor for 

 [2]. Using the experimental 

proton partial width and our ANC we get for the 
radiative width,  meV 

for  fm. This result does not contradict the 

experimental radiative width. Note that, due to 
the low binding energy of the bound state, the 
dependence on the lower limit of the radiative 
width obtained here is quite weak. 
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Now we consider the first resonance 

 with resonance energy 

 MeV, proton partial width 

 keV. This resonance decays entirely 

to the first excited state  with 

binding energy  MeV. The measured 

radiative width is  eV [1]. The 

ANC for the excited state of 17  has been 
determined in our work [2] from 

:  fm . We 

get for the radiative width 
 eV for  fm., 

and  eV for  fm. 

Thus, our low limit exceeds by more than 3  
the upper limit of the experimental radiative 
width given in [3], but agrees with the upper 
limit  eV determined in [4]. It 

calls for a new measurement of the radiative 
width of the first resonance in 
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