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Since pioneering work of Faddeev [1],
the three-body quantum scattering theory has
become a powerful tool for the investigation of
many different processes in various areas of
physics. However, the question of how to
incorporate long-range Coulomb forces into
the three-body scattering formalism remains as
major obstacle to its wider-spread application.

Also most stationary approaches, based
on integral equations, for taking into account
the Coulomb interactions have remained formal
In the approach proposed by Noble [2], the
three-body integral equations are rewritten so
that all Coulomb potentials are included in what
had been the 'unperturbed' Green's function.
The latter is changed into the three-body
Coulomb Green's function which then enters
the kernels of the new integral equations (as
well as those of auxiliary three-body equations
for quantities which in the original formulation
had been ordinary two-body T-operators). Thus
all unpleasant features related to the Coulomb
interactions are hidden in the unknown three-
body Coulomb Green's function. The problem
of calculating the latter is not any simpler than
the initial problem of solving for the full three-
body Green's function. Merkuriev's approach
[3] is based on the same idea, except that there
the Coulomb potentials are split by means of
suitable cut-off functions into 'inner' and 'outer'
parts, and only the latter are incorporated into
the (formerly free) three-body Green's function.
Not surprisingly, the kernels of the Faddeev-
type integral equations for the Green's function
for the cut-off Coulomb plus short-range
potentials have similar compactness properties
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as those for short-range potentials alone and,
thus, can be treated by conventional methods.
But for the determination of the auxiliary
Green's function containing the 'outer' Coulomb
potential parts, again only formal integral
equations have been proposed and shown to
possess compact kernels provided that all
Coulomb interactions are repulsive [3]. Their
explicit solution appears to be very difficult,
and has not been attempted. For completeness
we mention that the uniqueness of the solutions
of the differential
Coulomb-like potentials has been proved in a

Faddeev equations for
special class of functions [3], assuming that all
three particles have charges of equal sign
(repulsive Coulomb potentials). But it should be
kept in mind that the boundary condition to be
imposed on the solutions of the differential
equations used in [3] was not complete.
Recently the missing part of the needed
boundary conditions was derived in our papers
[4, 5]. We found the leading asymptotic terms
of the three-body Coulomb scattering wave
function in the asymptotic domain where two
particles are close together (in the continuum)
and far away from the third particle.

An important practical result has been
derived by Veselova [6]. When considering the
Faddeev with
Coulomb potentials at energies below the

integral equations screened
breakup threshold, she was able to obtain from
the kernel that term which in the zero-screening
limit yields the so-called two-particle or center-
of-mass Coulomb singularity, in such a form
that it could be inverted explicitly. Thus the

modified three-body integral equations with



compact kernels were obtained. But this
inversion procedure was only shown to work
for energies below the breakup threshold. At
energies above that threshold, three-particle
singularities appeared [6, 3] which nobody has
succeeded to handle until now.

Because of the difficulties in deriving
proper equations for the kernels of three-body
transition operators which are valid for all
energies and are well suited for practical
calculations, it appears more promising to split
the problem into several independent parts. A
first

equations

step consists in developing integral
for effective-two-body transition
amplitudes which describe all possible binary
processes, i.e., processes in which a projectile
impinges on a two-particle bound state leading
again to a two-body final state ((in-)elastic and
rearrangement collisions, or so-called 2—2
reactions). The search for appropriate equations
for breakup amplitudes describing 2—3
reactions, or for three-body equations for
amplitudes describing 3—3 processes, is
deferred to a later stage.

Such an approach was developed in [7,
8]. Starting from the Alt-Grassberger-Sandhas
(AGS) integral equations for the three-body
transition operators [9], they can be reduced
exactly by means of the so-called quasiparticle
approach to a set of coupled, multichannel,
for

Lippmann-Schwinger-type equations

effective-two-body (i.e., binary) transition
amplitudes. By using the screening method, this
the

subsequent extraction, of the leading (in the

formulation allowed 1solation, and
limit of vanishing screening radius) Coulomb
singularity which then could be inverted
explicitly. After renormalization, the various
screened binary amplitudes have been shown to
coincide, in the zero-screening limit, with the

corresponding amplitudes as resulting from
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Dollar's time-dependent theory, in particular
for energies above the three-body threshold.
The unique relation between amplitudes as
defined in the time-dependent and stationary
screening and renormalization approach could
be established also for the breakup (2 — 3)
amplitudes, but only for the case of two charged
and one neutral particles. Thus, for the latter
case [3], from the mathematical point of view
the screening and renormalization approach
provides a proof of the compactness of the
corresponding (three-body) Faddeev or AGS
integral equations, in a special class of
functions.

In spite of the success of the screening
and renormalization approach, not only as a
method for proving the existence of various
quantities of interest but also as a practical
computational tool, it appears highly desirable
to investigate the effective-two-body AGS
equations directly for unscreened Coulomb
potentials. The question of compactness of the
kernels occurring therein depends on the
analytical properties of their constituents, which
are the so-called ‘effective potentials' and
'effective free propagators'. The latter are
known to have only a pole singularity 'at the
on-shell point' (besides the three-body cut). For
the effective potentials, however, no thorough
investigation of their singularities has been
performed up to now.

The aim of our work is to overcome
that deficiency. We investigated the analytical
structure and the results of our research has
been published recently in two papers [10, 11].
The first paper [10] deals with the nondiagonal
effective potentials which are the driving terms
for all possible rearrangements of the three
particles in 2 — 2 processes. Throughout the
investigation it is assumed that all Coulomb

potentials are repulsive, i.e., that the charges of



all three particles are of the same sign. The
new result is that the singularity in the
momentum-transfer plane, which is the leading
and, there- fore, the most dangerous one, is an
integrable branch point located off the energy
shell. Hence, it can never coincide, for values
of the momenta in the integration region, with
the pole of the effective free propagator.
Consequently, the leading singularities of the
nondiagonal kernels are integrable.

The second paper [11] deals with the
singularity structure of the diagonal kernels.
There it has be shown that, if the charges of all
of the
nonintegrable singularities appear only on the

three particles are same  sign,
energy shell, and coincide below the breakup
threshold with those considered by Veselova
[6]. They can, however, be explicitly singled
out and inverted as has been done by Alt and
Sandhas [8]. Moreover, the off-the-energy-
shell singularities of the diagonal kernels turn
out to be integrable. These imply that after a
few iterations the (suitably modified) effective-
two-body AGS equations become integral
equations with compact kernels.

The results of our investigation provide
the proof that momentum space three-body
integral equations in the form of effective two-
body AGS equations can be used with
confidence to calculate all possible arrangement
(i.e., 2 — 2) amplitudes below and above the
three-body threshold, provided the charges of
all three particles are of the same sign. It is
worth mentioning that from the proofs we
presented also follows that, as soon as charges
with opposite signs are involved, the kernels do,
indeed, develop severe singularities which
preclude application of standard methods of
integral equations theory. We note also that the
results obtained so far do not yet constitute a

proof of compactness of the kernels of the
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integral equations of the Faddeev [1] or AGS
[9] type for breakup processes 2 — 3. One
obvious consequence is that application of
methods which aim at directly solving these
integral equations for 2 — 3 processes would
(as yet) be without mathematical justification.
Hence, it is of great importance to continue
these investigations for the effective potentials
occurring in the (integral) equations for 2 — 3
amplitudes.
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