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Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient

S. Shlomo and A. I. Sanzhur

Studies of compression modes of nuclei
are of particular interest since their strength
distributions, S(E), are sensitive to the value of
the nuclear matter incompressibility coefficient,
K [1]. At present, Hartree-Fock (HF) based
random-phase-approximation(RPA) calculations
for the isoscalar giant monopole resonance
(ISGMR) reproduce the experimental data for
effective interactions associated with
incompressibility K = 210 ± 20 MeV.

The study of the isoscalar giant dipole
resonance (ISGDR) is very important since this
compression mode provides an independent
source of information on K.  Early experimental
attempts to identify the ISGDR in 208Pb resulted
with a value of E1 ~ 21 MeV for the centroid
energy.  Very recent and more accurate data on
the ISGDR obtained at our Cyclotron Institute
for a wide range of nuclei seems to indicate that
the experimental values for E1 are smaller than
the corresponding HF-RPA results by 3–5 MeV.
This discrepancy between theory and experiment
raises doubts concerning the unambiguous
extraction of K from energies of compression
modes.

In this work we address this discrepancy
between theory and experiment by examining
the relation between the strength function S(E)
and the excitation cross section σ (E) of the
ISGDR, obtained by ∀-scattering. We
emphasize that it is quite common in theoretical
work on giant resonance to calculate S(E) for a
certain scattering operator F whereas in the
analysis of experimental data of σ (E) one
carries out distorted-wave-Born-approximation
(DWBA) calculations with a certain transition

potential.  Here we present results of accurate
microscopic calculations for S(E) and for

)(Eσ with the folding model (FM) DWBA with

transition densities ∆t(r) obtained from HF-RPA
calculations and suggest a simple explanation
for the discrepancy between theory and
experiment concerning the ISGDR.

In self-consistent HF-RPA calculation
one starts by adopting specific effective
nucleon-nucleon interaction, V12, carries out the
HF calculation for the ground state of the
nucleus and then solves the RPA equation using
the particle-hole (p-h) interaction Vph which
corresponds to V12.  The RPA Green's function
G is obtained from
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where G0 is the free p-h Green's function.  For
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the strength function and transition density are
given by
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Note that (4) is consistent with the strength in
the region E ± )E/2 and is consistent with
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In fully self-consistent HF-RPA
calculations, the spurious state (associated with
the center of mass motion) T = 0, L = 1 appears
at E = 0 and no spurious state mixing (SSM) in
the ISGDR occurs. However, although not
always stated in the literature, actual
implementations of HF-RPA (and relativistic
RPA) are not fully self-consistent.  One usually
makes the following approximations:  (i)
neglecting the two-body Coulomb and spin-orbit
interactions in Vph, (ii) approximating
momentum parts in Vph, (iii) limiting the p-h
space in a discretized calculation by a cut-off

energy max
phE , and (iv) introducing a smearing

parameter (i.e., a Lorentzian with ∋/2).
Although the effect of these approximations on
the centroid energies of giant resonances is small
(less than 1 MeV), the effect on the ISGDR is
quite serious since each of these approximations
introduces a SSM in the ISGDR.

Recently [1,2] we have shown that in
order to correct for the effects of SSM on S(E)
and the transition density we use the projection
operator
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With f0 = f - 0f1 = (r3 - 0r)Y1M(Σ) . The value of 0
associated with the coherent state transition
density
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where ∆0 (is the ground state density of the
nucleus, is given by
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To determine the transition density ∆t for
the ISGDR we use (4) with F0 and obtain ∆0

then project out the spurious term by making use
of (7)
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We have carried out [1] numerical
calculations for the S(E), ∆t(r) and Φ(E) within
the FM-DWBA-HF-RPA theory.  We used the
SLI Skyrme interaction, which is associated with
K = 230 MeV, and carried out HF calculations
using a spherical box of R > 25 fm.  For the
RPA calculations we used the Green's function
approach with mesh size )r = 0.3 fm and p-h

maximum energy of max
phE  = 150 MeV (we

include particle states with principle quantum
number up to 12), since it is well-known that in

order to extract accurate ∆t(r), max
phE should be

much larger than the value required ( max
phE  ~ 50

MeV) to recover EWSR.  Since in our
calculation we also neglected the two-body
coulomb and spin-orbit interactions, the spurious
state energies differ from 0 by a few MeV. We
therefore renormalized the strength of the Vph by
a factor (0.99 and 0.974 for 116Sn and 208Pb,
respectively), to place the spurious state at
E=0.2 MeV. We have included a Lorentzian
smearing (∋/2 = 1 MeV) and corrected for the
SSM as described above. We carried out the
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FM-DWBA calculation for Φ(E) using a density
dependent Gaussian nucleon-∀ interaction with
parameters adjusted to reproduce the elastic
cross section, with ∆0 and ∆t from HF-RPA.

Using the operator f = r2 for the IS-
GMR we calculated the corresponding S(E), for
E up to 60 MeV. We recover 100% of the
corresponding EWSR and obtained the values of
17.09 and 14.48 MeV for the centroid energy of
the ISGMR in 116Sn and 208Pb, respectively. The
corresponding recent experimental values
obtained at our Institute are 16.07 ± 0.12 and
14.17 ± 0.28 MeV, respectively.

Figure 1 exhibits the strength functions
for the ISGDR in 208Pb obtained from Eqs. (5),
(4) and (9). The solid line describes the result
obtained using f0.  Note that this result coincides
with S0(E), which is free of SSM contribution.
Similarly, the dashed line describes the
erroneous result obtained using f3 (it is also
different from S3(E)). We find that when using
f3, the excitation strengths obtained for certain
states are sensitive to the value of ∋. The result
obtained with f3 coincides with that obtained

with f0 for ∋ →  0, as expected.  Thus, in
configuration RPA calculation of ∆t, one may
use f3 and correct for the SSM contribution
before the smearing process.

Our results for the ISGDR, S0(E),
indicate two main components with the low
energy component containing close to 30% of
the EWSR (for E up to 23 and 19 MeV for 116Sn
and 208Pb, respectively), in agreement with the
experimental observation [3].

In Figure 2 we present results of
microscopic calculations of the excitation cross

Figure 1:  Strength functions for the ISGDR in 208Pb
obtained from Eqs. (4), (9) and (5), using f3 (dashed line)

and 13 fff ηη −=  (solid line), with 0 = 52.1 fm2.

Figure 2:  The ISDGR in 116Sn.  The middle panel:
maximum double differential cross section obtained from
∆t (RPA).  The lower panel:  maximum cross section
obtained with ∆coll (dashed line) and ∆t (solid line)
normalized to 100% of the EWSR.  Upper panel:  The solid
and dashed lines are the ratios of the middle panel curve
with the solid and dashed lines of the lower panel,
respectively.
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section of the ISGDR in 116Sn by 240 MeV ∀-
particle, carried out within the FM-DWBA.  The
dashed lines are obtained using ∆coll(r) of the
ISGDR.  It is seen from the upper panel that the
use of ∆coll increases the EWSR by at least 10%
and may shift the centroid energy by a few
percent.  An important result of our calculation
is that the maximum cross section for the
ISGDR drops below the current experimental
sensitivity of 2 mb/sr/MeV for excitation energy
above 35 MeV (30 MeV for 208Pb), which
contains about 20% of the EWSR.  This missing
strength leads to a reduction of more than 2.5
MeV in the ISGDR energy and thus explains the
discrepancy between theory and experiment.
More sensitive experiments and/or with higher
∀-particle energy are thus needed.

In summary, we developed and applied
an accurate and general method to eliminate the

SSM contributions from S(E) and ∆t.  Our
results indicate: (i) Existence of non-negligible
ISGDR strength at low energy and (ii) Accurate
determination of the relation between S(E) and
Φ(E) resolves the long standing problem of the
conflicting results obtained for K, deduced from
experimental data Φ(E) for the ISGDR and data
for the ISGMR.
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