A 2[%] Level of ⁸B and the ⁷Be(p,**(**)⁸B *S*-factor

F.C. Barker^{*} and A.M. Mukhamedzhanov

^{*}Department of Theoretical Physics, Australian National University, Canberra, Australia

In a recent ⁷Be + p elastic scattering experiment, Gol'dberg *et al.* [1] found evidence for a wide *s*-wave f⁶ or 2⁶ level of ⁸B at an excitation energy of $E_x = 3.0$ MeV. They speculate on how such a level would affect the low-energy *S* factor for the ⁷Be(p, ()⁸B reaction, which plays a crucial role in the solar neutrino problem. Measurements of the *S* factor at laboratory energies ($E_{c.m} > 100$ keV), where $E_{c.m}$ is the relative p -⁷Be energy, have to be extrapolated to the effective energy in the sun's interior ($E_{c.m}=20$ keV) using a calculated energy dependence, and this could be changed if a fit to the properties of this ⁸B level were imposed.

Gol'dberg [2] has identified the level as $2^{\%}$ with a width between 1 and 4 MeV, and has given the experimental energy resolution as 0.25 MeV. A 2[%] level near 3 MeV may not be unexpected; for example, van Hees and Glaudemans [3], in their shell-model calculations, predict a 2° state in ⁸Li, and in its mirror nucleus ⁸B, at 2.91 MeV (unless otherwise indicated, energies are excitation energies). Most direct measurements of the ⁷Be(p,()⁸B S factor have been confined to the region with $E_x < 2$ MeV.

We here, using R-matrix formulae with parameter values chosen to ${}^{7}\text{Li} + n$ data, consider the role of 2[%] states of ${}^{8}\text{B}$ in the calculated *S* factors for the ${}^{7}\text{Be}(p, (){}^{8}\text{B}$ reaction, and the modification of the *S* factor caused by the lowest 2[%] state to be at an excitation energy of 3 MeV. In the R-matrix calculation [4], the spectroscopic factor for the lowest 2[%] state of ${}^{8}\text{Li}$ or ${}^{8}\text{B}$ was taken from a shell-model calculation,

and the energy of the state was then determined by fitting the ⁷Li + n scattering length $a_2 =$ -3.63fm. Now that an experimental value of the resonance, $E_r = 3.0$ MeV [1], is available for the energy of the state in ⁸B, it seems more reasonable to make use of that, giving the eigenvalue E_1 = 3.0 MeV, and to adjust the spectroscopic factor in order to fit a_2 . The resultant value of the resonance width '⁰ lies within Gol'dberg's suggested range of 1 - 4 MeV [2] for channel radius a = 4.0 fm, and is somewhat larger for the larger values of a. Attempts to fit the data with a much smaller value of $^{\circ}$ for the 2[%] level of 8 B at 3 MeV (say 2 MeV or less) would immediately have difficulty in fitting the ⁷Li + n scattering length a_2 . Apart from that, the 1^+ and 2^+ spectroscopic factors for ⁸Li and the thermal-neutron capture data could be fitted, but the predicted F_{n} at higher energies would be higher than the experimental values, and the predicted ${}^{7}Be(p, (){}^{8}B E1 S$ factor would become larger than the experimental values near 3 MeV. The calculated total S_{17} -factor and the swave $2^{\%}$ S factor containing the contribution from the resonance at 3 MeV are shown in Fig. 1. The low-energy S factor is shown in Fig. 2 in comparison with the most-recent direct measurements by Hammache et al. [5] and Hass et al. [6]. Fig. 2 also shows the earlier direct measurements by Vaughn et al. [7] and Filippone et al. [8]. Recent experimental values of the E1 S factor determined from the Coulomb dissociation of ⁸B [9,10] tend to lie higher and are also shown in Fig. 2. Recapping we can conclude that the width of the $2^{\%}$ level at 3 MeV

in ⁸B needs to be near the upper end of the range 1 - 4 MeV suggested by Gol'dberg [2], in order to fit all the data. Assumption of a width as small as, say, 2 MeV makes it impossible to fit the ⁷Li + n data and leads to unreasonably large values at higher energies for the ⁷Be(p, γ)⁸B S factor. A measurement of the width of the 2⁻ level from a reaction such as ⁷Be(³He,d)⁸B [11] seems desirable. More accurate new direct measurements of the S₁₇ factor at energies above 2 MeV seem also important.

References

[1] V.Z. Gol'dberg *et al.*, JETP Lett. **67**, 1013 (1998).

[2] V.Z. Gol'dberg, private communication.

[3] A.G.M. van Hees and P.W.M. Glaudemans,

- Z. Phys. A314, 323 (1983); A315 223 (1984).
- [4] F.C. Barker, Nucl. Phys. A 588, 693 (1995).
 [5] F. Hammache *et al.*, Phys. Rev. Lett. 80 928

(1998). [6] M. Hass *et al.*, Phys. Lett. B **462**, 237

- [0] M. Hass *et al.*, Phys. Lett. B **462**, 237 (1999).
- [7] F.J. Vaughn *et al.*, Phys. Rev. C 2, 1657 (1970).
- [8] B.W. Filippone *et al.*, Phys. Rev. C 28, 2222 (1983).
- [9] T. Kikuchi *et al.*, Eur. Phys. J. A 3, 213 (1998).

[10] N. Iwasa *et al.*, Phys. Rev. Lett. **83**, 2910 (1999).

[11] A.M. Mukhamedzhanov, R.E. Tribble and N.K. Timofeyuk, Phys. Rev. C 51, 3472 (1995).

Figure 1. Calculated ${}^{7}Be(p,\gamma){}^{8}B E1$, S factor as a function of proton energy, for channel radius a = 4.0 fm (solid curve), 5.0 fm (dashed curve) and 6.0 fm (short dashed curve), in the four-level, four-channel R-matrix approximation. The s-wave 2[°] contribution is shown in the lower curves.

Figure 2. ${}^{7}Be(p,\gamma)^{8}B S$ factor as a function of ${}^{7}Be + p c.m.$ energy. The experimental points are from Hammache *et al.* [5] (crosses), Hass *et al.* [6] (solid squares), Vaughn *et al.* [7] (circles), Filippone *et al.* [8] (open squares), Kikuchi *et al.* [9] (closed triangles), and Iwasa ^{et al.} [10] (open triangles). The curves are the predicted E1 S factor for a=4.0 m (solid curve), 5.0 fm (dashed curve) and 6.0 fm (dotted curve), in the one-level, one-channel R-matrix approximation.