Structural Evolution in the Neutron Rich-Nucleus ¹⁴B[†]

Shadi Bedoor Department of Physics Western Michigan University

We have studied 14 B employing two complementary reactions: 13 B $(d,p)^{14}$ B and 15 C $(d,^{3}$ He) 14 B. Both measurements were conducted in inverse kinematics using HELIOS at the ATLAS facility at ANL. The radioactive 13 B and 15 C beams were produced using the In-Flight method. The light particles $(p \text{ and }^{3}\text{He})$ were analyzed with HELIOS. The beam–like 13,14 B ions were identified in a set of silicon Δ E–E telescope, distinguishing bound and unbound states in 14 B. From the 13 B $(d, p)^{14}$ B measurement the excitation energies and spectroscopic factors for the low–lying $(2_1,1_1,3_1,4_1)^-$ states were extracted. The proton removal measurement explores only the states with $1s_{1/2}$ strength in 14 B; the results provide a determination of 2_2^- energy level. The data from both measurements lead to a determination of the $1s_{1/2}$ and $0d_{5/2}$ effective single-particle energies in 14 B.

[†] Work supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 and DE-AC02-06CH11357, and the US National Science Foundation under Grant No. PHY-1068217.