Friday, November 3rd At 3:30pm

Exploration of the ⁶⁰Ca Region

Abstract:

Increased beam intensities at NSCL, RIKEN, and new facilities like FRIB in the future, coupled with advances in experimental techniques, such as the use of a two-stage separator, will allow observation of many new nuclei along the neutron drip-line. In a recent experiment production cross sections for a large number of neutron-rich nuclei produced from the fragmentation of 48 Ca (140 and 345 MeV/u), 76 Ge (130 MeV/u), 82 Se (139 MeV/u), and 70 Zn (345 MeV/u), beams were measured in RIKEN and NSCL. These experiments identified more than 30 new isotopes of the elements $11 \le Z \le 26$. Systematic trends observed in the production cross sections changes in the nuclear mass surface, that can be explained with a shell model that predicts a subshell closure at N=34 around Z=20. This talk will present:

- \bullet Results from the recent experiment at RIKEN using a $^{70}{\rm Zn}$ beam aimed at the search for new isotopes in the $^{60}{\rm Ca}$ region.
- Secondary reactions in the production target may be significant contributors. Results from different experiments on secondary reactions will be presented.
- Evidence that trends in production cross sections near the driplines can be modeled by new dBE production cross section systematics, which can be based on predicted binding energies.

CYCLOTRON COLLOQUIUM

Dr. O. B. Tarasov

National
Superconducting
Cyclotron
Laboratory

Michigan State
University

CYLOTRON INSTITUTE

Room 228

Refreshments will be served at 3:15pm